Hardy type derivations on the surreal numbers
Abstract
The field of transseries was introduced by Ecalle to give a solution to Dulac's problem, a weakening of Hilbert's 16th problem. They form an elementary extension of the real exponential field and have received the attention of model theorists. Another such elementary extension is given by Conway's surreal numbers, and various connections with the transseries have been conjectured, among which the possibility of introducing a Hardy type derivation on the surreal numbers. I will present a complete solution to these conjectures obtained in collaboration with Vincenzo Mantova.
Polynomial values modulo primes on average, and the large(r) sieve
Abstract
In sieve theory, one is concerned with estimating the size of a sifted set, which avoids certain residue classes modulo many primes. For example, the problem of counting primes corresponds to the situation when the residue class 0 is removed for each prime in a suitable range. This talk will be concerned about what happens when a positive proportion of residue classes is removed for each prime, and especially when this proporition is more than a half. In doing so we will come across an algebraic question: given a polynomial f(x) in Z[x], what is the average size of the value set of f reduced modulo primes?
16:00
Optimal casino betting: why lucky coins and good memory are important
Abstract
We consider the dynamic casino gambling model initially proposed by Barberis (2012) and study the optimal stopping strategy of a pre-committing gambler with cumulative prospect theory (CPT) preferences. We illustrate how the strategies computed in Barberis (2012) can be strictly improved by reviewing the entire betting history or by tossing random coins, and explain that such improvement is possible because CPT preferences are not quasi-convex. Finally, we develop a systematic and analytical approach to finding the optimal strategy of the gambler. This is a joint work with Prof. Xue Dong He (Columbia University), Prof. Jan Obloj, and Prof. Xun Yu Zhou.
Nonlinear Dynamics in Phononic Lattices
Abstract
Distinct solutions of nonlinear systems via deflation
Abstract
Nonlinear systems of partial differential equations (PDEs) may permit several distinct solutions. The typical current approach to finding distinct solutions is to start Newton's method with many different initial guesses, hoping to find starting points that lie in different basins of attraction. In this talk, we present an infinite-dimensional deflation algorithm for systematically modifying the residual of a nonlinear PDE problem to eliminate known solutions from consideration. This enables the Newton--Kantorovitch iteration to converge to several different solutions, even starting from the same initial guess. The deflated Jacobian is dense, but an efficient preconditioning strategy is devised, and the number of Krylov iterations is observed not to grow as solutions are deflated. The technique is then applied to computing distinct solutions of nonlinear PDEs, tracing bifurcation diagrams, and to computing multiple local minima of PDE-constrained optimisation problems.
Linear inviscid damping for monotone shear flows.
Abstract
exhibit damping close to linear shear flows.
The mechanism behind this "inviscid
In this talk I give a proof of linear stability,
11:00
"The first-order theory of G_Q".
Abstract
Motivated by an open conjecture in anabelian geometry, we investigate which arithmetic properties of the rationals are encoded in the absolute Galois group G_Q. We give a model-theoretic framework for studying absolute Galois groups and discuss in what respect orderings and valuations of the field are known to their first-order theory. Some questions regarding local-global principles and the transfer to elementary extensions of Q are raised.
Self-maps on compact F-spaces.
Abstract
Compact F-spaces play an important role in the area of compactification theory, the prototype being w*, the Stone-Cech remainder of the integers. Two curious topological characteristics of compact F-spaces are that they don’t contain convergent sequences (apart from the constant ones), and moreover, that they often contain points that don’t lie in the boundary of any countable subset (so-called weak P-points). In this talk we investigate the space of self-maps S(X) on compact zero-dimensional F-spaces X, endowed with the compact-open topology. A natural question is whether S(X) reflects properties of the ground space X. Our main result is that for zero-dimensional compact F-spaces X, also S(X) doesn’t contain convergent sequences. If time permits, I will also comment on the existence of weak P-points in S(X). This is joint work with Richard Lupton.
Groups acting on $\mathbb{R}$-trees
Abstract
In Bass-Serre theory, one derives structural properties of groups from their actions on simplicial trees. In this talk, we introduce the theory of groups acting on $\mathbb{R}$-trees. In particular, we explain how the Rips machine is used to classify finitely generated groups which act freely on $\mathbb{R}$-trees.
Groups acting on R(ooted) Trees
Abstract
In particular, some nice things about branch groups, whose subgroup structure "sees" all actions on rooted trees.
All-at-once solution of time-dependant PDE-constrained optimization problems
Abstract
All-at-once schemes aim to solve all time-steps of parabolic PDE-constrained optimization problems in one coupled computation, leading to exceedingly large linear systems requiring efficient iterative methods. We present a new block diagonal preconditioner which is both optimal with respect to the mesh parameter and parallelizable over time, thus can provide significant speed- up. We will present numerical results to demonstrate the effectiveness of this preconditioner.
14:30
Monochromatic cycle partitions - an exact result
Abstract
The severe European winter of 1962/63
Quadrature and optimization for a better bound
Abstract
There is a beautiful problem resulting from arithmetic number theory where a continuous and compactly supported function's 3-fold autoconvolution is constant. In this talk, we optimize the coefficients of a Chebyshev series multiplied by an endpoint singularity to obtain a highly accurate approximation to this constant. Convolving functions with endpoint singularities turns out to be a challenge for standard quadrature routines. However, variable transformations inducing double exponential endpoint decay are used to effectively annihilate the singularities in a way that keeps accuracy high and complexity low.
Thermalisation and Revivals following a Quantum Quench in a 1+1-dimensional CFT
Abstract
In a quantum quench, a system is prepared in some state
$|\psi_0\rangle$, usually the ground state of a hamiltonian $H_0$, and then
evolved unitarily with a different hamiltonian $H$. I study this problem
when $H$ is a 1+1-dimensional conformal field theory on a large circle of
length $L$, and the initial state has short-range correlations and
entanglement. I argue that (a) for times $\ell/2<t<(L-\ell)/2$ the
reduced density matrix of a subinterval of length $\ell$ is exponentially
close to that of a thermal ensemble; (b) despite this, for a rational CFT
the return amplitude $\langle\psi_0|e^{-iHt}|\psi_0\rangle$ is $O(1)$ at
integer multiples of $2t/\ell$ and has interesting structure at all rational
values of this ratio. This last result is related to the modular properties
of Virasoro characters.
Groups acting on R(ooted) trees
Abstract
In particular, some nice things about branch groups, whose subgroup structure "sees" all actions on rooted trees.
The random paraxial wave equation and application to correlation-based imaging
Abstract
We analyze wave propagation in random media in the so-called paraxial regime, which is a special high-frequency regime in which the wave propagates along a privileged axis. We show by multiscale analysis how to reduce the problem to the Ito-Schrodinger stochastic partial differential equation. We also show how to close and solve the moment equations for the random wave field. Based on these results we propose to use correlation-based methods for imaging in complex media and consider two examples: virtual source imaging in seismology and ghost imaging in optics.
O-minimality and applications
Abstract
In this talk I will discuss the notion of o-minimality, which can be approached from either a model-theoretic standpoint, or an algebraic one. I will exhibit some o-minimal structures, focussing on those most relevant to number theorists, and attempt to explain how o-minimality can be used to attain an assortment of results.
15:45
Balanced walls in random groups
Abstract
Building a suitable family of walls in the Cayley complex of a finitely
presented group G leads to a nontrivial action of G on a CAT(0) cube
complex, which shows that G does not have Kazhdan's property (T). I
will discuss how this can be done for certain random groups in Gromov's
density model. Ollivier and Wise (building on earlier work of Wise on
small-cancellation groups) have built suitable walls at densities <1/5,
but their method fails at higher densities. In recent joint work with
Piotr Przytycki we give a new construction which finds walls at densites
<5/24.
Learning with Cross-Kernel Matrices and Ideal PCA
Abstract
We describe how cross-kernel matrices, that is, kernel matrices between the data and a custom chosen set of `feature spanning points' can be used for learning. The main potential of cross-kernel matrices is that (a) they provide Nyström-type speed-ups for kernel learning without relying on subsampling, thus avoiding potential problems with sampling degeneracy, while preserving the usual approximation guarantees and the attractive linear scaling of standard Nyström methods and (b) the use of non-square matrices for kernel learning provides a non-linear generalization of the singular value decomposition and singular features. We present a novel algorithm, Ideal PCA (IPCA), which is a cross-kernel matrix variant of PCA, showcasing both advantages: we demonstrate on real and synthetic data that IPCA allows to (a) obtain kernel PCA-like features faster and (b) to extract novel features of empirical advantage in non-linear manifold learning and classification.
Singular Fibers and Coulomb Phases
Abstract
I will discuss how singular fibers in higher codimension in elliptically fibered Calabi-Yau fourfolds can be studied using Coulomb branch phases for d=3 supersymmetric gauge theories. This approach gives an elegent description of the generalized Kodaira fibers in terms of combinatorial/representation-theoretic objects called "box graphs", including the network of flops connecting distinct small resolutions. For physics applications, this approach can be used to constrain the possible matter spectra and possible U(1) charges (models with higher rank Mordell Weil group) for F-theory GUTs.