Polynomials orthogonal with respect to oscillatory weights
Abstract
A solid object placed at a liquid-gas interface causes the formation of a meniscus around it. In the case of a vertical circular cylinder, the final state of the static meniscus is well understood, from both experimental and theoretical viewpoints. Experimental investigations suggest the presence of two different power laws in the growth of the meniscus. In this talk I will introduce a theoretical model for the dynamics and show that the early-time growth of the meniscus is self-similar, in agreement with one of the experimental predictions. I will also discuss the use of a numerical solution to investigate the validity of the second power law.
In this talk, we will discuss low Weissenberg number
effects on mathematical properties of solutions for several PDEs
governing different viscoelastic fluids.
I present some recent work with Bruce Driver and Christian Litterer on rough paths 'constrained’ to lie in a d - dimensional submanifold of a Euclidean space E. We will present a natural definition for this class of rough paths and then describe the (second) order geometric calculus which arises out of this definition. The talk will conclude with more advanced applications, including a rough version of Cartan’s development map.
Trees are not just combinatorial structures: they are also
biological structures, both in the obvious way but also in the
study of evolution. Starting from DNA samples from living
species, biologists use increasingly sophisticated mathematical
techniques to reconstruct the most likely “phylogenetic tree”
describing how these species evolved from earlier ones. In their
work on this subject, they have encountered an interesting
example of an operad, which is obtained by applying a variant of
the Boardmann–Vogt “W construction” to the operad for
commutative monoids. The operations in this operad are labelled
trees of a certain sort, and it plays a universal role in the
study of stochastic processes that involve branching. It also
shows up in tropical algebra. This talk is based on work in
progress with Nina Otter [www.fair-fish.ch].
The splitting-up method is a powerful tool to solve (SP)DEs by dividing the equation into a set of simpler equations that are easier to handle. I will speak about how such splitting schemes can be derived and extended by insights from the theory of rough paths.
Finally, I will discuss numerics for real-world applications that appear in the management of risk and engineering applications like nonlinear filtering.
We explore the technique of elementary submodels to prove
results in topology and set theory. We will in particular prove the
delta system lemma, and Arhangelskii's result that a first countable
Lindelof space has cardinality not exceeding continuum.
Nature and the world of human technology are full of
networks. People like to draw diagrams of networks: flow charts,
electrical circuit diagrams, signal flow diagrams, Bayesian networks,
Feynman diagrams and the like. Mathematically-minded people know that
in principle these diagrams fit into a common framework: category
theory. But we are still far from a unified theory of networks.
The aim of this lecture is to give a general introduction to
the interacting particle system and applications in finance, especially
in the pricing of American options. We survey the main techniques and
results on Snell envelope, and provide a general framework to analyse
these numerical methods. New algorithms are introduced and analysed
theoretically and numerically.
This talk will give an introduction to generalized complex geometry, where complex and symplectic structures are particular cases of the same structure, namely, a generalized complex structure. We will also talk about a sister theory, generalized complex geometry of type Bn, where generalized complex structures are defined for odd-dimensional manifolds as well as even-dimensional ones.
In this work, we want to construct the solution $(Y,Z,K)$ to the following BSDE
$$\begin{array}{l}
Y_t=\xi+\int_t^Tf(s,Y_s,Z_s)ds-\int_t^TZ_sdB_s+K_T-K_t, \quad 0\le t\le T, \\
{\mathbf E}[l(t, Y_t)]\ge 0, \quad 0\le t\le T,\\
\int_0^T{\mathbf E}[l(t, Y_t)]dK_t=0, \\
\end{array}
$$
where $x\mapsto l(t, x)$ is non-decreasing and the terminal condition $\xi$
is such that ${\mathbf E}[l(T,\xi)]\ge 0$.
This equation is different from the (classical) reflected BSDE. In particular, for a solution $(Y,Z,K)$,
we require that $K$ is deterministic. We will first study the case when $l$ is linear, and then general cases.
We also give some application to mathematical finance. This is a joint work with Philippe Briand and Romuald Elie.
In Parkinson’s disease, increased power of oscillations in firing rate has been observed throughout the cortico-basal-ganglia circuit. In
particular, the excessive oscillations in the beta range (13-30Hz) have been shown to be associated with difficulty of movement initiation. However, on the basis of experimental data alone it is difficult to determine where these oscillations are generated, due to complex and recurrent structure of the cortico-basal-ganglia-thalamic circuit. This talk will describe a mathematical model of a subset of basal-ganglia that is able to reproduce experimentally observed patterns of activity. The analysis of the model suggests where and under which conditions the beta oscillations are produced.
For Logic Seminar: Note change of time and location!
This talk will focus on extremizers for
a family of Fourier restriction inequalities on planar curves. It turns
out that, depending on whether or not a certain geometric condition
related to the curvature is satisfied, extremizing sequences of
nonnegative functions may or may not have a subsequence which converges
to an extremizer. We hope to describe the method of proof, which is of
concentration compactness flavor, in some detail. Tools include bilinear
estimates, a variational calculation, a modification of the usual
method of stationary phase and several explicit computations.
I will explain why one can symplectically embed closed symplectic manifolds (with integral symplectic form) into CPn and compute the weak homotopy type of the space of all symplectic embeddings of such a symplectic manifold into CP∞.
The classical small cancellation theory goes back to the 1950's and 1960's when the geometry of 2-complexes with a unique 0-cell was studied, i.e. the standard 2-complex of a finite presentation. D.T. Wise generalizes the Small Cancellation Theory to 2-complexes with arbitray 0-cells showing that certain classes of Small Cancellation Groups act properly discontinuously and cocompactly on CAT(0) Cube complexes and hence have codimesion 1-subgroups. To be more precise I will introduce "his" version of small Cancellation Theory and go roughly through the main ideas of his construction of the cube complex using Sageeve's famous construction. I'll try to make the ideas intuitively clear by using many pictures. The goal is to show that B(4)-T(4) and B(6)-C(7) groups act properly discontinuously and cocompactly on CAT(0) Cube complexes and if there is time to explain the difficulty of the B(6) case. The talk should be self contained. So don't worry if you have never had heard about "Small Cancellation".
In this talk, I will explain part of the programme of Gorenstein, Lyons
and Solomon (GLS) to provide a new proof of the CFSG. I will focus on
the difference between the initial notion of groups of characteristic
$2$-type (groups like Lie type groups of characteristic $2$) and the GLS
notion of groups of even type. I will then discuss work in progress
with Capdeboscq to study groups of even type and small $2$-local odd
rank. As a byproduct of the discussion, a picture of the structure of a
finite simple group of even type will emerge.