Thu, 10 Nov 2011

16:00 - 17:00
L3

A hyperbolic Ax-Lindemann theorem in the cocompact case

Andrei Yafaev (UCL)
Abstract

This is a joint work with Emmanuel Ullmo.

This work is motivated by J.Pila's strategy to prove the Andre-Oort conjecture. One ingredient in the strategy is the following

conjecture:

Let S be a Shimura variety uniformised by a symmetric space X.

Let V be an algebraic subvariety of S. Maximal algebraic subvarieties of the preimage of V in X are precisely the

components of the preimages of weakly special subvarieties contained in V.

We will explain the proof of this conjecture in the case where S is compact.

Thu, 10 Nov 2011

14:00 - 15:00
Gibson Grd floor SR

SOPHY: An Automated, Aerothermal Design and Optimisation System for Aero-Engine Components

Dr Shahrokh Shahpar
(Rolls Royce plc.)
Abstract

Computational Fluid Dynamics (CFD) has become an

indispensable tool in designing turbomachinery components in all sectors of

Rolls-Royce business units namely, Aerospace, Industrial, Marine and Nuclear.

Increasingly sophisticated search and optimisation techniques are used based on

both traditional optimisation methods as well as, design of computer experiment

techniques, advanced surrogate methods, and evolutionary optimisation

techniques. Geometry and data representation as well as access, queuing and

loading control of large high performance computing clusters are areas of

research to establish the most efficient techniques for improving the

performance of an already highly efficient modern jet engine.

\\

\\

This presentation focuses on a high fidelity design

optimisation framework called SOPHY that is used in Rolls-Royce to provide

parametric geometry, automatic meshing, advanced design-space search

algorithms, accurate and robust CFD methodology and post-processing. The

significance of including the so-called real geometry features and interaction

of turbomachinery components in the optimisation cycle are discussed. Examples are drawn from real world

applications of the SOPHY design systems in an engine project.

Thu, 10 Nov 2011
13:00
DH 1st floor SR

Equilibrium of Time-Inconsistent Stochastic Linear--Quadratic Control

Hanqing Jin
Abstract

In this work, we study equilibrium solutions for a LQ

control problem with state-dependent terms in the objective, which

destroy the time-consisitence of a pre-commited optimal solution.

We get a sufficient condition for equilibrium by a system of

stochastic differential equations. When the coefficients in the

problem are all deterministic, we find an explicit equilibrium

for general LQ control problem. For the mean-variance portfolio

selection in a complete financial market, we also get an explicit

equilibrium with random coefficient of the financial.

Thu, 10 Nov 2011

12:00 - 13:00
SR2

Holomorphic analogues of Chern-Simons gauge theory and Wilson operators

Tim Adamo
Abstract

Chern-Simons theory is topological gauge theory in three dimensions that contains an interesting class of operators called Wilson lines/loops, which have connections with both physics and pure mathematics. In particular, it has been shown that computations with Wilson operators in Chern-Simons theory reproduce knot invariants, and are also related to Gauss linking invariants. We will discuss the complex generalizations of these ideas, which are known as holomorphic Chern-Simons theory, Wilson operators, and linking, in the setting of Calabi-Yau three-folds. This will (hopefully) include a definition of all three of these holomorphic analogues as well as an investigation into how these ideas can be translated into simple homological algebra, allowing us to propose the existence of "homological Feynman rules" for computing things like Wilson operators in a holomorphic Chern-Simons theory. If time permits I may say something about physics too.

Wed, 09 Nov 2011

11:30 - 12:30

Mathematical models of composition (St Hugh's, 80WR18)

David Hume
Abstract

We explore methods (deterministic and otherwise) of composing music using mathematical models. Musical examples will be provided throughout and the audience (with the speakers assistance) will compose a brand new piece.

Wed, 09 Nov 2011

10:15 - 11:15
OCCAM Common Room (RI2.28)

A posteriori error analysis for a cut-cell finite-volume method

Simon Tavener
(Colorado State University)
Abstract

Diffusive process with discontinuous coefficients provide significant computational challenges. We consider the solution of a diffusive process in a domain where the diffusion coefficient changes discontinuously across a curved interface. Rather than seeking to construct discretizations that match the interface, we consider the use of regularly-shaped meshes so that the interface "cuts'' through the cells (elements or volumes). Consequently, the discontinuity in the diffusion coefficients has a strong impact on the accuracy and convergence of the numerical method. We develop an adjoint based a posteriori error analysis technique to estimate the error in a given quantity of interest (functional of the solution). In order to employ this method, we first construct a systematic approach to discretizing a cut-cell problem that handles complex geometry in the interface in a natural fashion yet reduces to the well-known Ghost Fluid Method in simple cases. We test the accuracy of the estimates in a series of examples.

Tue, 08 Nov 2011
17:00
L2

"Biaffine geometries, amalgams and group recognition"

Dr Justin McInroy
(Oxford)
Abstract

A polar space $\Pi$ is a geometry whose elements are the totally isotropic subspaces of a vector space $V$ with respect to either an alternating, Hermitian, or quadratic form. We may form a new geometry $\Gamma$ by removing all elements contained in either a hyperplane $F$ of $\Pi$, or a hyperplane $H$ of the dual $\Pi^*$. This is a \emph{biaffine polar space}.

We will discuss two specific examples, one with automorphism group $q^6:SU_3(q)$ and the other $G_2(q)$. By considering the stabilisers of a maximal flag, we get an amalgam, or "glueing", of groups for each example. However, the two examples have "similar" amalgams - this leads to a group recognition result for their automorphism groups.

Tue, 08 Nov 2011

15:45 - 16:45
L3

Donaldson-Thomas theory: generalizations and related conjectures

Vittoria Bussi
(Oxford)
Abstract

Generalized Donaldson-Thomas invariants $\bar{DT}^\alpha(\tau)$ defined by Joyce and Song are rational numbers which 'count' both $\tau$-stable and $\tau$-semistable coherent sheaves with Chern character $\alpha$ on a Calabi-Yau 3-fold X, where $\tau$ denotes Gieseker stability for some ample line bundle on X. The theory of Joyce and Song is valid only over the field $\mathbb C$. We will extend it to algebraically closed fields $\mathbb K$ of characteristic zero.

We will describe the local structure of the moduli stack $\mathfrak M$ of coherent sheaves on X, showing that an atlas for $\mathfrak M$ may be written locally as the zero locus of an almost closed 1-form on an \'etale open subset of the tangent space of $\mathfrak M$ at a point, and use this to deduce identities on the Behrend

function $\nu_{\mathfrak M}$ of $\mathfrak M$. This also yields an extension of generalized Donaldson-Thomas theory to noncompact Calabi-Yau 3-folds.

Finally, we will investigate how our argument might yield generalizations of the theory to a even wider context, for example the derived framework using Toen's theory and to motivic Donaldson-Thomas theory in the style of Kontsevich and Soibelman.

Tue, 08 Nov 2011

14:30 - 15:30
L3

Embedding trees in sparse graphs

Diana Piguet
(Birmingham)
Abstract

An embedding of a graph H in a graph G is an injective mapping of the vertices of H to the vertices of G such that edges of H are mapped to edges of G. Embedding problems have been extensively studied. A very powerful tool in this area is Szemeredi's Regularity Temma. It approximates the host graph G by a quasirandom graph which inherits many of the properties of G. Unfortunately the direct use of Szemeredi's Regularity Lemma is useless if the host graph G is sparse.

During the talk I shall expose a technique to deal with embedding trees in sparse graphs. This technique has been developed by Ajtai, Komlos,Simonovits and Szemeredi to solve the Erdos-Sos conjecture. Presently the author together with Hladky, Komlos, Simonovits, Stein and Szemeredi apply this method to solve the related conjecture of Loebl, Komlos and Sos (approximate version).

Mon, 07 Nov 2011
15:45
L3

Right-angled Artin groups and their automorphisms

Ric Wade
(Oxford)
Abstract

Automorphisms of right-angled Artin groups interpolate between $Out(F_n)$ and $GL_n(\mathbb{Z})$. An active area of current research is to extend properties that hold for both the above groups to $Out(A_\Gamma)$ for a general RAAG. After a short survey on the state of the art, we will describe our recent contribution to this program: a study of how higher-rank lattices can act on RAAGs that builds on the work of Margulis in the free abelian case, and of Bridson and the author in the free group case.

Mon, 07 Nov 2011
15:45
Oxford-Man Institute

Near-critical survival probability of branching Brownian motion with an absorbing barrier"

Simon Harris
(University of Bath)
Abstract

We will consider a branching Brownian motion where particles have a drift $-\rho$, binary branch at rate $\beta$ and are killed if they hit the origin. This process is supercritical  if $\beta>\rho^2/2$ and we will discuss the survival probability in the regime as criticality is approached. (Joint work with Elie Aidekon)

Mon, 07 Nov 2011

14:15 - 15:15
L3

Autoduality of Jacobians for singular curves

Dmytro Arinkin
(University of North Carolina & IAS Princeton)
Abstract

Let C be a (smooth projective algebraic) curve. It is well known that the Jacobian J of C is a principally polarized abelian variety. In otherwords, J is self-dual in the sense that J is identified with the space of topologically trivial line bundles on itself.

Suppose now that C is singular. The Jacobian J of C parametrizes topologically trivial line bundles on C; it is an algebraic group which is no longer compact. By considering torsion-free sheaves instead of line bundles, one obtains a natural singular compactification J' of J.

In this talk, I consider (projective) curves C with planar singularities. The main result is that J' is self-dual: J' is identified with a space of torsion-free sheaves on itself. This autoduality naturally fits into the framework of the geometric Langlands conjecture; I hope to sketch this relation in my talk.

Mon, 07 Nov 2011
14:15
Oxford-Man Institute

Brownian measures on Jordan curves

Anton Thalmaier
(University of Luxembourg)
Abstract

We describe a construction of the Brownian measure on Jordan curves with respect to the Weil-Petersson metric. The step from Brownian motion on the diffeomorphism group of the circle to Brownian motion on Jordan curves in the complex plane requires probabilistic arguments well beyond the classical theory of conformal welding, due to the lacking quasi-symmetry of canonical Brownian motion on Diff(S1). A new key step in our construction is the systematic use of a Kählerian diffusion on the space of Jordan curves for which the welding functional gives rise to conformal martingales.