Thu, 18 Nov 2010

14:00 - 15:00
Gibson Grd floor SR

Optimization with time-periodic PDE constraints: Numerical methods and applications

Mr. Andreas Potschka
(University of Heidelberg)
Abstract

Optimization problems with time-periodic parabolic PDE constraints can arise in important chemical engineering applications, e.g., in periodic adsorption processes. I will present a novel direct numerical method for this problem class. The main numerical challenges are the high nonlinearity and high dimensionality of the discretized problem. The method is based on Direct Multiple Shooting and inexact Sequential Quadratic Programming with globalization of convergence based on natural level functions. I will highlight the use of a generalized Richardson iteration with a novel two-grid Newton-Picard preconditioner for the solution of the quadratic subproblems. At the end of the talk I will explain the principle of Simulated Moving Bed processes and conclude with numerical results for optimization of such a process.

Thu, 18 Nov 2010

13:00 - 14:00
SR1

Algebraic approximations to special Kahler metrics

Stuart J Hall
(Imperial College, London)
Abstract

I will begin by defining the space of algebraic metrics in a particular Kahler class and recalling the Tian-Ruan-Zelditch result saying that they are dense in the space of all Kahler metrics in this class.  I will then discuss the relationship between some special algebraic metrics called 'balanced metrics' and distinguished Kahler metrics (Extremal metrics, cscK, Kahler-Ricci solitons...). Finally I will talk about some numerical algorithms due to Simon Donaldson for finding explicit examples of these balanced metrics (possibly with some pictures).

Wed, 17 Nov 2010

11:30 - 12:30
ChCh, Tom Gate, Room 2

Thompson's Groups

Elisabeth Fink
(University of Oxford)
Abstract

I am going to introduce Thompson's groups F, T and V. They can be seen in two ways: as functions on [0,1] or as isomorphisms acting on trees.

Wed, 17 Nov 2010

10:15 - 11:15
OCCAM Common Room (RI2.28)

The case for differential geometry in continuum mechanics

Marcelo Epstein
(University of Calgary)
Abstract

Modern differential geometry is the art of the abstract that can be pictured. Continuum mechanics is the abstract description of concrete material phenomena. Their encounter, therefore, is as inevitable and as beautiful as the proverbial chance meeting of an umbrella and a sewing machine on a dissecting table. In this rather non-technical and lighthearted talk, some of the surprising connections between the two disciplines will be explored with a view at stimulating the interest of applied mathematicians.

Tue, 16 Nov 2010

15:45 - 16:45
L3

(HoRSe seminar) On the calculus underlying Donaldson-Thomas theory II

Kai Behrend
(Vancouver)
Abstract

On a manifold there is the graded algebra of polyvector fields with its Lie-Schouten bracket, and the module of de Rham differentials with exterior differentiation. This package is called a "calculus". The moduli

space of sheaves (or derived category objects) on a Calabi-Yau threefold has a kind of "virtual calculus" on it, at least conjecturally. In particular, this moduli space has virtual de Rham cohomology groups, which categorify Donaldson-Thomas invariants, at least conjecturally. We describe some attempts at constructing such a virtual calculus. This is work in progress.

Tue, 16 Nov 2010

14:30 - 15:30
L3

Triangles in tripartite graphs

John Talbot
(UCL)
Abstract

How many triangles must a graph of density d contain? This old question due to Erdos was recently answered by Razborov, after many decades of progress by numerous authors.

We will consider the analogous question for tripartite graphs. Given a tripartite graph with prescribed edges densities between each

pair of classes how many triangles must it contain?

Tue, 16 Nov 2010

14:00 - 15:00
SR1

(HoRSe seminar) On the calculus underlying Donaldson-Thomas theory I

Kai Behrend
(Vancouver)
Abstract

On a manifold there is the graded algebra of polyvector fields with its Lie-Schouten bracket, and the module of de Rham differentials with exteriour differentiation. This package is called a "calculus". The moduli space of sheaves (or derived category objects) on a Calabi-Yau threefold has a kind of "virtual calculus" on it, at least conjecturally. In particular, this moduli space has virtual de Rham cohomology groups, which categorify Donaldson-Thomas invariants, at least conjecturally. We describe some attempts at constructing such a virtual calculus. This is work in progress.

Tue, 16 Nov 2010
13:15
DH 1st floor SR

"Exponential Asymptotics and Free-Surface Fluid Flow"

Chris Lustri
(OCIAM)
Abstract

We investigate the behaviour of free-surface waves on time-varying potential flow in the limit as the Froude number becomes small. These waves are exponentially small in the Froude number, and are therefore inaccessible to ordinary asymptotic methods. As such, we demonstrate how exponential asymptotic techniques may be applied to the complexified free surface in order to extract information about the wave behaviour on the free surface, using a Lagrangian form of the potential flow equations. We consider the specific case of time-varying flow over a step, and demonstrate that the results are consistent with the steady state case.

Mon, 15 Nov 2010
17:00
Gibson 1st Floor SR

The role of small space dimensions in the regularity theory of elliptic problems

Lisa Beck
(Scuola Normale Superiore di Pisa)
Abstract

Let $u \in W^{1,p}(\Omega,\R^N)$, $\Omega$ a bounded domain in

$\R^n$, be a minimizer of a convex variational integral or a weak solution to

an elliptic system in divergence form. In the vectorial case, various

counterexamples to full regularity have been constructed in dimensions $n

\geq 3$, and it is well known that only a partial regularity result can be

expected, in the sense that the solution (or its gradient) is locally

continuous outside of a negligible set. In this talk, we shall investigate

the role of the space dimension $n$ on regularity: In arbitrary dimensions,

the best known result is partial regularity of the gradient $Du$ (and hence

for $u$) outside of a set of Lebesgue measure zero. Restricting ourselves to

the partial regularity of $u$ and to dimensions $n \leq p+2$, we explain why

the Hausdorff dimension of the singular set cannot exceed $n-p$. Finally, we

address the possible existence of singularities in two dimensions.

Mon, 15 Nov 2010

15:45 - 16:45
L3

$L^p$ cohomology and pinching

Pierre Pansu
(Orsay)
Abstract

We prove that no Riemannian manifold quasiisometric to

complex hyperbolic plane can have a better curvature pinching. The proof

uses cup-products in $L^p$-cohomology.

Mon, 15 Nov 2010
15:45
Eagle House

Crossing a repulsive interface: slowing of the dynamic and metastability phenomenon

Hubert Lacoin
Abstract

We study a simple heat-bath type dynamic for a simple model of
polymer interacting with an interface. The polymer is a nearest neighbor path in
Z, and the interaction is modelised by energy penalties/bonuses given when the
path touches 0. This dynamic has been studied by D. Wilson for the case without
interaction, then by Caputo et al. for the more general case. When the interface
is repulsive, the dynamic slows down due to the appearance of a bottleneck in the
state space, moreover, the systems exhibits a metastable behavior, and, after time
rescaling, behaves like a two-state Markov chain.


Mon, 15 Nov 2010
14:15
Eagle House

The critical curve for pinning of random polymers. A large deviations approach

Dimitris Cheliotis
Abstract

We consider a directed random polymer interacting with an interface
that carries random charges some of which attract while others repel
the polymer. Such a polymer can be in a localized or delocalized
phase, i.e., it stays near the interface or wanders away respectively.
 The phase it chooses depends on the temperature and the average bias
of the disorder. At a given temperature, there is a critical bias
separating the two phases. A question of particular interest, and
which has been studied extensively in the Physics and Mathematics
literature, is whether the quenched critical bias differs from the
annealed critical bias. When it does, we say that the disorder is
relevant.

Using a large deviations result proved recently by Birkner, Greven,
and den Hollander, we derive a variational formula for the quenched

critical bias. This leads to a necessary and sufficient condition for
disorder relevance that implies easily some known results as well as
new ones.

The talk is based on joint work with Frank den  Hollander.


Mon, 15 Nov 2010

12:00 - 13:00
L3

The Large Hadron Collider – the story so far

Alan Barr
(Oxford)
Abstract
String theory has a vested interest in a particular S1xS1 object found just outside Geneva. The machine in question has been colliding protons at high energy since March this year, and by now the ATLAS and CMS experiments have clocked up more than 10^12 high-energy events. In this seminar I present the status of the accelerator and detectors, highlight the major physics results obtained so far, and discuss the extent to which information from the LHC can inform us about TeV-scale theory.
Fri, 12 Nov 2010
16:30
L2

Non linear problems involving anomalous diffusion

Professor Luis Caffarelli
Abstract

Anomalous ( non local) diffusion processes appear in many subjects: phase transition, fracture dynamics, game theory I will describe some of the issues involved, and in particular, existence and regularity for some non local versions of the p Laplacian, of non variational nature, that appear in non local tug of war.

Fri, 12 Nov 2010
14:15
DH 1st floor SR

No-arbitrage criteria under small transaction costs

Yuri Kabanov
(Universite de Franche-Compte)
Abstract

The talk will be devoted to criteria of absence of arbitrage opportunities under small transaction costs for a family of multi-asset models of financial market.