Mon, 09 Nov 2009
15:45
Eagle House

TBA

Stanislav Smirnov
(Université de Genève)
Mon, 09 Nov 2009
14:15
L3

Lattices in Simple Lie Groups: A Survey

Michael Cowling
(Birmingham)
Abstract

Lattices in semisimple Lie groups have been studied from the point of view of number theory, algebraic groups, topology and geometry, and geometric group theory. The Fragestellung of one line of investigation is to what extent the properties of the lattice determine, and are determined by, the properties of the group. This talk reviews a number of results about lattices, and in particular looks at Mostow--Margulis rigidity.

Mon, 09 Nov 2009
14:15
Eagle House

TBA

Tom Cass
(Oxford)
Mon, 09 Nov 2009

12:00 - 13:00
L3

On the classification of Brane Tilings

Amihay Hanany
(Imperial College)
Abstract
Brane Tilings give a large class of SCFT's in 3+1 and 2+1 dimensions. In this talk I will discuss several attempt to classify all such models. Statistical properties of these models can be derived using some techniques in number theory.
Mon, 09 Nov 2009

11:00 - 12:00
Gibson 1st Floor SR

Geometrically constrained walls in two dimension.

Valeriy Slastikov
(University of Bristol)
Abstract

We address the effect of extreme geometry on a non-convex variational problem motivated by recent investigations of magnetic domain walls trapped by sharp thin necks. We prove the existence of local minimizers representing geometrically constrained walls under suitable symmetry assumptions on the domains and provide an asymptotic characterization of the wall profile. The asymptotic behavior, which depends critically on the scaling of length and width of the neck, turns out to be qualitatively different from the higher-dimensional case and a richer variety of regimes is shown to exist.

Fri, 06 Nov 2009

16:30 - 17:00
DH 1st floor SR

A comparison of stochastic and analytical models for cell migration

Kit Yates
(University of Oxford)
Abstract

Abstract: Cell migration and growth are essential components of the development of multicellular organisms. The role of various cues in directing cell migration is widespread, in particular, the role of signals in the environment in the control of cell motility and directional guidance. In many cases, especially in developmental biology, growth of the domain also plays a large role in the distribution of cells and, in some cases, cell or signal distribution may actually drive domain growth. There is a ubiquitous use of partial differential equations (PDEs) for modelling the time evolution of cellular density and environmental cues. In the last twenty years, a lot of attention has been devoted to connecting macroscopic PDEs with more detailed microscopic models of cellular motility, including models of directional sensing and signal transduction pathways. However, domain growth is largely omitted in the literature. In this paper, individual-based models describing cell movement and domain growth are studied, and correspondence with a macroscopic-level PDE describing the evolution of cell density is demonstrated. The individual-based models are formulated in terms of random walkers on a lattice. Domain growth provides an extra mathematical challenge by making the lattice size variable over time. A reaction-diffusion master equation formalism is generalised to the case of growing lattices and used in the derivation of the macroscopic PDEs.

Fri, 06 Nov 2009

11:45 - 13:00
DH 1st floor SR

Investigating the freezing of colloids by X-rays radiography and tomography: recent results, limitations and potential for further progress

Sylvain Deville
(Saint Gobain)
Abstract

Understanding the critical parameters controlling the stability of solidification interfaces in colloidal systems is a necessary step in many domains were the freezing of colloids is present, such as materials science or geophysics. What we understand so far of the solidification of colloidal suspensions is derived primarily from the analogies with dilute alloys systems, or the investigated behaviour of single particles in front of a moving interface and is still a subject of intense work. A more realistic, multi-particles model should account for the particles movement, the various possible interactions between the particles and the multiple interactions between the particles and the solid/liquid cellular interface. In order to bring new experimental observations, we choose to investigate the stability of a cellular interface during directional solidification of colloidal suspensions by using X-ray radiography and tomography. I will present recent experimental results of ice growth (ice lenses) and particle redistribution observations, their implications, and open the discussion regarding the limitations of the technique and the potential for further progress in the field using this approach.

Thu, 05 Nov 2009

14:00 - 15:00
3WS SR

On rational interpolation

Dr. Joris van Deun
(University of Antwerp and University of Oxford)
Thu, 05 Nov 2009

12:00 - 13:00
SR1

Compactifying Spec $\mathbb{Z}$

Peter Arndt
(Göttingen / Cambridge)
Abstract

The spectrum of the integers is an affine scheme which number theorists would like to complete to a projective scheme, adding a point at infinity. We will list some reasons for wanting to do this, then gather some hints about what properties the completed object might have. In particular it seems that the desired object can only exist in some setting extending traditional algebraic geometry. We will then present the proposals of Durov and Shai Haran for such extended settings and the compactifications they construct. We will explain the close relationship between both and, if time remains, relate them to a third compactification in a third setting, proposed by Toen and Vaquie.

Wed, 04 Nov 2009

11:30 - 12:30
ChCh, Tom Gate, Room 2

The Quest for $\mathbb{F}_\mathrm{un}$

Tobias Barthel
(University of Oxford)
Abstract

We will present different ideas leading to and evolving around geometry over the field with one element. After a brief summary of the so-called numbers-functions correspondence we will discuss some aspects of Weil's proof of the Riemann hypothesis for function fields. We will see then how lambda geometry can be thought of as a model for geometry over $\mathbb{F}_\mathrm{un}$ and what some familiar objects should look like there. If time permits, we will

explain a link with stable homotopy theory.