Zonal vs meridional velocity variance in the World Ocean: order in the chaotic ocean
The t-dependence and t-improper chromatic numbers of random graphs
Abstract
We consider a natural generalisation of the independence and chromatic numbers and study their behaviour in Erdos-Renyi random graphs. The t-dependence number of a graph G is the size of the largest subset of the vertices of G whose induced subgraph has maximum degree at most t. The t-improper chromatic number of G is the smallest number of parts needed in a partition of the vertex set of G such that each part induces a subgraph of maximum degree at most t. Clearly, when t = 0, these parameters are, respectively, the independence and chromatic numbers of G. For dense random graphs, we determine the asymptotic ehaviour of these parameters over the range of choices for the growth of t as a function of the number of vertices.
This is joint work with Nikolaos Fountoulakis and Colin McDiarmid.
Existence of conformal metric with constant Q-curvature
Abstract
We address a similar problem for the so-called Q-curvature, which plays an important role in conformal geometry and is a natural higher order analogue of the Gauss curvature. The problem is tackled using a variational and Morse theoretical approach.
Jensen's Theorem and a Simple Application
Abstract
This second 'problem sheet' of the term includes a proof of Jensen's Theorem for the number of zeroes of an analytic function in a disc, the usefulness of which is highlighted by an application to the Riemann zeta-function.
15:45
15:45
Gradient estimate for the heat semi-group and heat estimates on H-type groups
Abstract
In this talk, we give the asymptotics estimates for the heat kernel and its gradient estimates on H-type groups. Moreover, we get gradient estimates for the heat semi-group.
14:15
Apologies, Lecture cancelled
Abstract
Open Riemann surfaces and the Weil-Petersson Poisson structure
14:15
Preferences and implicit risk measures
Abstract
We discuss some connections between various notions of rationality in the face of uncertainty and the theory of convex risk measures, both in a static and a dynamic setting.
AdS/CFT and Generalized Complex Geometry
Abstract
Modelling the Circulatory System: Evaluating Arterial Pressure and Cardiac Output
Abstract
The circulatory system is the most important and amongst the most complicated mechanisms in the human body. Consisting of the heart, the arteries and the veins, it is amply aided by a variety of mechanisms aiming to facilitate adequate perfusion of the body tissues at the appropriate pressure. On this talk I am focusing on the development of a computational model which relates patient specific factors (age, gender, whether someone is an athlete/smokes etc) and their effects on different vascular regions which ultimately determine the arterial pressure and the cardiac output.
14:30
14:15
Dynamic CDO Term Structure Modelling
Abstract
This paper provides a unifying approach for valuing contingent claims on a portfolio of credits, such as collateralized debt obligations (CDOs). We introduce the defaultable (T; x)-bonds, which pay one if the aggregated loss process in the underlying pool of the CDO has not exceeded x at maturity T, and zero else. Necessary and sufficient conditions on the stochastic term structure movements for the absence of arbitrage are given. Background market risk as well as feedback contagion effects of the loss process are taken into account. Moreover, we show that any ex- ogenous specification of the volatility and contagion parameters actually yields a unique consistent loss process and thus an arbitrage-free family of (T; x)-bond prices. For the sake of analytical and computational efficiency we then develop a tractable class of doubly stochastic affine term structure models.
10:00
16:30
The fluid dynamics of sperm motility
Abstract
Sperm cells have been an archetype for very low Reynolds number swimming since the pioneering work of Gray & Hancock in the 1950s. However, there are fundamental questions regarding the swimming and function of mammalian, and particularly human sperm, that are unanswered, and moreover scientific and technological developments mean that for the first time, answering these questions is now possible.
I will present results of our interdisciplinary work on two topics: (1) the relatively famous problem of 'surface accumulation' of sperm, and (2) characterising the changes to the flagellar beat that occur in high viscosity liquids such as cervical mucus. The approach we use combines both mathematical modelling and high speed imaging experiments.
I will then discuss areas we are currently developing: quantifying the energy transport requirements of sperm, and understanding chemotaxis - the remarkable ability of human sperm to 'smell' lily of the valley perfume, which may be important in fertilisation.
Coverage Processes on Spheres and Condition Numbers for Linear Programming
Abstract
This talk is concerned with the probabilistic behaviour of a condition
number C(A) for the problem of deciding whether a system of n
homogeneous linear inequalities in m unknowns has a non-zero solution.
In the case where the input system is feasible, the exact probability
distribution of the condition number for random inputs is determined,
and a sharp bound for the general case. In particular, for the
expected value of the logarithm log C(A), an upper bound of order
O(log m) (m the number of variables) is presented which does not
depend on the number of inequalities.
The probability distribution of the condition number C(A) is closely
related to the probability of covering the m-sphere with n spherical
caps of a given radius. As a corollary, we obtain bounds on the
probability of covering the sphere with random caps.
Convergence analysis of the planewave expansion method for band gap calculations in photonic crystal fibres
Abstract
Modelling the behaviour of light in photonic crystal fibres requires
solving 2nd-order elliptic eigenvalue problems with discontinuous
coefficients. The eigenfunctions of these problems have limited
regularity. Therefore, the planewave expansion method would appear to
be an unusual choice of method for such problems. In this talk I
examine the convergence properties of the planewave expansion method as
well as demonstrate that smoothing the coefficients in the problem (to
get more regularity) introduces another error and this cancels any
benefit that smoothing may have.