Mon, 24 Nov 2008

13:30 - 14:30
Gibson 1st Floor SR

Fine structures arising in diblock copolymers and reaction-diffusion systems

Yoshihito Oshita
(Okayama University, Japan)
Abstract

We consider a class of energy functionals containing a small parameter ε and a long-range interaction. Such functionals arise from models for phase separation in diblock copolymers and from stationary solutions of FitzHugh–Nagumo type systems.

On an interval of arbitrary length, we show that every global minimizer is periodic, and provide asymptotic expansions for the periods.

In 2D, periodic hexagonal structures are observed in experiments in certain di-block

copolymer melts. Using the modular function and an heuristic reduction of a mathematical model, we present a mathematical account of a hexagonal pattern selection observed in di-block copolymer melts.

We also consider the sharp interface problem arising in the singular limit,

and prove the existence and the nondegeneracy of solutions whose interface is a distorted circle in a two-dimensional bounded domain without any assumption on the symmetry of the domain.

Mon, 24 Nov 2008

12:00 - 13:00
L3

Summing the Instantons in the Heterotic String

Jock McOrist
(Chicago)
Abstract

Abstract: I will discuss some recent developments in understanding compactifications of the Heterotic string on Calabi-Yau manifolds. These compactifications are well-described by linear sigma models with (0,2) supersymmetry. I will show how to use these models to compute physical observables, such as genus zero Yukawa couplings, their singularity structure, and dependence on bundle moduli.

Fri, 21 Nov 2008
14:15
DH 1st floor SR

Optimal management of pension funds: a stochastic control approach

Fausto Gozzi
(Luiss)
Abstract

In this talk we present a work done with M. Di Giacinto (Università di Cassino - Italy) and Salvatore Federico (Scuola Normale - Pisa - Italy). The subject of the work is a continuous time stochastic model of optimal allocation for a defined contribution pension fund with a minimum guarantee. We adopt the point of view of a fund manager maximizing the expected utility from the fund wealth over an infinite horizon.

The level of wealth is constrained to stay above a "solvency level".

The model is naturally formulated as an optimal control problem of a stochastic delay equation with state constraints and is treated by the dynamic programming approach.

We first present the study in the simplified case of no delay where a satisfactory theory can be built proving the existence of regular feedback control strategies and then go to the more general case showing some first results on the value function and on its properties.

Thu, 20 Nov 2008

17:00 - 18:00
L3

Dependent Pairs

Ayhan Gunaydin
(Oxford)
Abstract

I will prove that certain pairs of ordered structures are dependent. There are basically two cases depending on whether the smaller structure is dense or discrete. I will discuss the proofs of two quite general theorems which construe the dividing line between these cases. Among examples are dense pairs of o-minimal structures in the first case, and tame pairs of o-minimal structures in the latter. This is joint work with P. Hieronymi.

Thu, 20 Nov 2008

14:00 - 15:00
Comlab

Approximation of harmonic maps and wave maps

Prof Soeren Bartels
(University of Bonn)
Abstract

Partial differential equations with a nonlinear pointwise constraint defined through a manifold occur in a variety of applications: The magnetization of a ferromagnet can be described by a unit length vector field and the orientation of the rod-like molecules that constitute a liquid crystal is often modeled by a vector field that attains its values in the real projective plane thus respecting the head-to-tail symmetry of the molecules. Other applications arise in geometric

modeling, quantum mechanics, and general relativity. Simple examples reveal that it is impossible to satisfy pointwise constraints exactly by lowest order finite elements. For two model problems we discuss the practical realization of the constraint, the efficient solution of the resulting nonlinear systems of equations, and weak accumulation of approximations at exact solutions.

Thu, 20 Nov 2008

12:00 - 13:00
SR1

The construction of ample <2>-polarised K3-fibrations

Alan Thompson
(Oxford)
Abstract

Fibrations are a valuable tool in the study of the geometry of higher dimensional algebraic varieties. By expressing a higher dimensional variety as a fibration by lower dimensional varieties, we can deduce much about its properties. Whilst the theory of elliptic fibrations is very well developed, fibrations by higher dimensional varieties, especially K3 surfaces, are only just beginning to be studied. In this talk I study a special case of the K3-fibration, where the general fibres admit a &lt;2&gt;-polarisation and the base of the fibration is a nonsingular curve.

Thu, 20 Nov 2008
12:00
Gibson 1st Floor SR

Elliptic equations in the plane satisfying a Carleson measure condition

David Rule
(University of Edinburgh)
Abstract

We study the Neumann and regularity boundary value problems for a divergence form elliptic equation in the plane. We assume the gradient

of the coefficient matrix satisfies a Carleson measure condition and consider data in L^p, 1

Wed, 19 Nov 2008
16:00
L3

TBA

James Vicary
(Comlab)
Wed, 19 Nov 2008

14:00 - 15:00
Gibson 1st Floor SR

An approach to solvability of the generalised Navier-Stokes equation

Vasily V. Zhikov
(Moscow State University and Vladimir State University, Russia)
Abstract

The Navier-Stokes equation with a non-linear viscous term will be considered, p is the exponent of non-linearity.

An existence theorem is proved for the case when the convection term is not subordinate to the viscous

term, in particular for the previously open case p

Tue, 18 Nov 2008

11:00 - 12:00
Gibson 1st Floor SR

Dynamic fracture based on Griffith's criterion

Christopher Larsen
(Worcester Polytechnic Institute, USA)
Abstract

There has been much recent progress in extending Griffith's criterion for

crack growth into mathematical models for quasi-static crack evolution

that are well-posed, in the sense that there exist solutions that can be

numerically approximated. However, mathematical progress in dynamic

fracture (crack growth consistent with Griffith's criterion, together with

elastodynamics) has been meager. We describe some recent results on a

phase-field model of dynamic fracture, as well as some models based on a

"sharp interface" instead of a phase-field.

Some possible strategies for showing existence for these last models will

also be described.

Mon, 17 Nov 2008
17:00
Gibson 1st Floor SR

A hyperbolic pertubation of the Navier-Stokes equations

Genevi&egrave;ve Raugel
(Universit&eacute; Paris Sud)
Abstract
Y. Brenier, R. Natalini and M. Puel have considered a ``relaxation" of the Euler equations in R2. After an approriate scaling, they have obtained the following hyperbolic version of the Navier-Stokes equations, which is similar to the hyperbolic version of the heat equation introduced by Cattaneo, $$\varepsilon u_{tt}^\varepsilon + u_t^\varepsilon -\Delta u^\varepsilon +P (u^\varepsilon \nabla u^\varepsilon) \, = \, Pf~, \quad (u^\varepsilon(.,0), u_t^\varepsilon(.,0)) \, = \, (u_0(.),u_1(.))~, \quad (1) $$ where $P$ is the classical Leray projector and $\varepsilon$ is a small, positive number. Under adequate hypotheses on the forcing term $f$, we prove global existence and uniqueness of a mild solution $(u^\varepsilon,u_t^\varepsilon) \in C^0([0, +\infty), H^{1}({\bf R}^2) \times L^2({\bf R}^2))$ of (1), for large initial data $(u_0,u_1)$ in $H^{1}({\bf R}2) \times L^2({\bf R}2)$, provided that $\varepsilon>0$ is small enough, thus improving the global existence results of Brenier, Natalini and Puel (actually, we can work in less regular Hilbert spaces). The proof uses appropriate Strichartz estimates, combined with energy estimates. We also show that $(u^\varepsilon,u_t^\varepsilon)$ converges to $(v,v_t)$ on finite intervals of time $[t_0,t_1]$, $0 <+ \infty$, when $\varepsilon$ goes to $0$, where $v$ is the solution of the corresponding Navier-Stokes equations $$ v_t -\Delta v +P (v\nabla v) \, = \, Pf~, \quad v(.,0) \, = \, u_0~. \quad (2) $$ We also consider Equation (1) in the three-dimensional case. Here we expect global existence results for small data. Under appropriate assumptions on the forcing term, we prove global existence and uniqueness of a mild solution $(u^\varepsilon,u_t^\varepsilon) \in C^0([0, +\infty), H^{1+\delta}({\bf R}^3) \times H^{\delta}({\bf R}^3))$ of (1), for initial data $(u_0,u_1)$ in $H^{1 +\delta}({\bf R}^3) \times H^{\delta}({\bf R}^3)$ (where $\delta >0 $ is a small positive number), provided that $\varepsilon > 0$ is small enough and that $u_0$ and $f$ satisfy a smallness condition. (Joint work with Marius Paicu)
Mon, 17 Nov 2008
15:45
L3

Around Baumslag-Solitar groups

Gilbert Levitt
Abstract

Baumslag-Solitar groups are very simple groups which are not Hopfian (they are isomorphic to proper quotients). I will discuss these groups, as well as their obvious generalizations, with emphasis on their automorphisms and their generating sets