Thu, 18 Jan 2007

14:00 - 15:00
Comlab

Radial basis function methods for meshless PDE computation

Prof Toby Driscoll
(University of Delaware)
Abstract

Radial basis functions have been used for decades for the interpolation of scattered,

high-dimensional data. Recently they have attracted interest as methods for simulating

partial differential equations as well. RBFs do not require a grid or triangulation, they

offer the possibility of spectral accuracy with local refinement, and their implementation

is very straightforward. A number of theoretical and practical breakthroughs in recent years

has improved our understanding and application of these methods, and they are currently being

tested on real-world applications in shallow water flow on the sphere and tear film evolution

in the human eye.

Mon, 15 Jan 2007
15:45
DH 3rd floor SR

The Global Error in Weak Approximations of Stochastic Differential Equations

Dr Saadia Ghazali
(Imperial College London)
Abstract

In this talk, the convergence analysis of a class of weak approximations of

solutions of stochastic differential equations is presented. This class includes

recent approximations such as Kusuoka's moment similar families method and the

Lyons-Victoir cubature on Wiener Space approach. It will be shown that the rate

of convergence depends intrinsically on the smoothness of the chosen test

function. For smooth functions (the required degree of smoothness depends on the

order of the approximation), an equidistant partition of the time interval on

which the approximation is sought is optimal. For functions that are less smooth

(for example Lipschitz functions), the rate of convergence decays and the

optimal partition is no longer equidistant. An asymptotic rate of convergence

will also be presented for the Lyons-Victoir method. The analysis rests upon

Kusuoka-Stroock's results on the smoothness of the distribution of the solution

of a stochastic differential equation. Finally, the results will be applied to

the numerical solution of the filtering problem.

 

Mon, 15 Jan 2007
14:15
DH 3rd floor SR

Differential Equations Driven by Gaussian Signals

Dr Peter Fritz
(University of Cambridge)
Abstract

We consider multi-dimensional Gaussian processes and give a novel, simple and

sharp condition on its covariance (finiteness of its two dimensional rho-variation,

for some rho <2) for the existence of "natural" Levy areas and higher iterated

integrals, and subsequently the existence of Gaussian rough paths. We prove a

variety of (weak and strong) approximation results, large deviations, and

support description.

Rough path theory then gives a theory of differential equations driven by

Gaussian signals with a variety of novel continuity properties, large deviation

estimates and support descriptions generalizing classical results of

Freidlin-Wentzell and Stroock-Varadhan respectively.

(Joint work with Nicolas Victoir.)

 

Thu, 30 Nov 2006
16:15
Fisher Room

TBA

Matthew Wingate
(DAMTP, Cambridge)
Thu, 30 Nov 2006
16:00
L3

The weight part of Serre's conjecture for Hilbert modular forms

Fred Diamond
(King's College, London)
Abstract

I will explain the statement of a generalization of Serre's conjecture on mod p Galois representations to the context of Hilbert modular forms. The emphasis will be on the recipe for the set of possible weights (formulated by Buzzard, Jarvis and myself, and partly proved by Gee) and its behavior in some special cases.