Tue, 18 Jan 2022
14:00
Virtual

Is everything a rational function?

Nick Trefethen
(Mathematical Institute (University of Oxford))
Abstract


There's an idea going back at least to Kirchberger in 1902 that since the only operations we can ultimately compute are +, -, *, and /, all of numerical computation must reduce to rational functions.  I've been looking into this idea and it has led in some interesting directions.

Tue, 18 Jan 2022

14:00 - 15:00
Virtual

FFTA: AI-Bind: Improving Binding Predictions for Novel Protein Targets and Ligands

Giulia Menichetti
(Northeastern University)
Abstract

Identifying novel drug-target interactions (DTI) is a critical and rate limiting step in drug discovery. While deep learning models have been proposed to accelerate the identification process, we show that state-of-the-art models fail to generalize to novel (i.e., never-before-seen) structures. We first unveil the mechanisms responsible for this shortcoming, demonstrating how models rely on shortcuts that leverage the topology of the protein-ligand bipartite network, rather than learning the node features. Then, we introduce AI-Bind, a pipeline that combines network-based sampling strategies with unsupervised pre-training, allowing us to limit the annotation imbalance and improve binding predictions for novel proteins and ligands. We illustrate the value of AI-Bind by predicting drugs and natural compounds with binding affinity to SARS-CoV-2 viral proteins and the associated human proteins. We also validate these predictions via auto-docking simulations and comparison with recent experimental evidence. Overall, AI-Bind offers a powerful high-throughput approach to identify drug-target combinations, with the potential of becoming a powerful tool in drug discovery.

arXiv link: https://arxiv.org/abs/2112.13168

Tue, 18 Jan 2022
14:00
Virtual

Dimensions of Iwasawa algebras and their representations

James Timmins
(Oxford)
Abstract

The Iwasawa algebra of a compact $p$-adic Lie group is fundamental to the study of the representations of the group. Understanding this representation theory is crucial in progress towards a (mod p) local Langlands correspondence. However, much remains unknown about Iwasawa algebras and their modules.

In this talk we'll aim to measure the size of the Iwasawa algebra and its representations. I'll explain the algebraic tools we use to do this - Krull dimension and canonical dimension - and survey previously known examples. Our main result is a new bound on these dimensions for the group $SL_2(O_F)$, where $F$ is a finite extension of the p-adic numbers. When $F$ is a quadratic extension, we find the Krull dimension is exactly 5, as predicted by a conjecture of Ardakov and Brown.

Tue, 18 Jan 2022
12:00
Virtual

Symmetry protected topological (SPT) phases of quasifree gapped ground states and coarse geometry

Chris Bourne
(Tohoku University and RIKEN)
Abstract

Symmetry protected topological (SPT) phases have recently attracted a lot of
attention from physicists and mathematicians as a topological classification
scheme for gapped ground states. In this talk I will briefly introduce the
operator algebraic approach to SPT phases in the infinite-volume limit. In
particular, I will focus on the quasifree (free-fermionic) setting, where we

can adapt tools from algebraic quantum field theory to describe phases of
gapped ground states using K-homology and the coarse index.

Mon, 17 Jan 2022

16:30 - 17:30

CANCELLED

Tobias Barker
(University of Bath)
Mon, 17 Jan 2022

16:00 - 17:00
C4

Classical Mechanics and Diophantine Equations

Jay Swar
Abstract

We'll sketch how the $K$-rational solutions of a system $X$ of multivariate polynomials can be viewed as the solutions of a "classical mechanics" problem on an associated affine space.

When $X$ has a suitable topology, e.g. if its $\mathbb{C}$-solutions form a Riemann surface of genus $>1$, we'll observe some of the advantages of this new point of view such as a relatively computable algorithm for effective finiteness (with some stipulations). This is joint work with Minhyong Kim.
 

Mon, 17 Jan 2022

15:30 - 16:30
Virtual

The link surgery formula and plumbed 3-manifolds

Ian Zemke
(Princeton)
Abstract

Lattice homology is a combinatorial invariant of plumbed 3-manifolds due to Nemethi. The definition is a formalization of Ozsvath and Szabo's computation of the Heegaard Floer homology of plumbed 3-manifolds. Nemethi conjectured that lattice homology is isomorphic to Heegaard Floer homology. For a restricted class of plumbings, this isomorphism is known to hold, due to work of Ozsvath-Szabo, Nemethi, and Ozsvath-Stipsicz-Szabo. By using the Manolescu-Ozsvath link surgery formula for Heegaard Floer homology, we prove the conjectured isomorphism in general. In this talk, we will talk about aspects of the proof, and some related topics and extensions of the result.

Mon, 17 Jan 2022
14:15
Virtual

Brane quantization of Toric Poisson varieties

Francis Bischoff
((Oxford University))
Abstract

The homogeneous coordinate ring of a projective variety may be constructed by geometrically quantizing the multiples of a symplectic form, using the complex structure as a polarization. In this talk, I will explain how a holomorphic Poisson structure allows us to deform the complex polarization into a generalized complex structure, leading to a non-commutative deformation of the homogeneous coordinate ring. The main tool is a conjectural construction of a category of generalized complex branes, which makes use of the A-model of an associated symplectic groupoid. I will explain this in the example of toric Poisson varieties. This is joint work with Marco Gualtieri (arXiv:2108.01658).

Mon, 17 Jan 2022
12:45
Virtual

Symmetry TFTs from String Theory

Federico Bonetti
(University of Oxford)
Abstract

The global symmetries of a d-dimensional quantum field theory (QFT), and their ’t Hooft anomalies, are conveniently captured by a topological field theory (TFT) in (d+1) dimensions, which we may refer to as the Symmetry TFT of the given d-dimensional QFT. This point of view has a vast range of applicability: it encompasses both ordinary symmetries, as well as generalized symmetries. In this talk, I will discuss systematic methods to compute the Symmetry TFT for QFTs realized by M-theory on a singular, non-compact space X. The desired Symmetry TFT is extracted from the topological couplings of 11d supergravity, via reduction on the space L, the boundary of X. The formalism of differential cohomology allows us to include discrete symmetries originating from torsion in the cohomology of L. I will illustrate this framework in two classes of examples: M-theory on an ALE space (engineering 7d SYM theory); M-theory on Calabi-Yau cones (engineering 5d superconformal field theories).

Thu, 13 Jan 2022

16:00 - 17:00
Virtual

Regularity structures and machine learning

Ilya Chevyrev
(Edinburgh University)
Further Information
Abstract

In many machine learning tasks, it is crucial to extract low-dimensional and descriptive features from a data set. In this talk, I present a method to extract features from multi-dimensional space-time signals which is motivated, on the one hand, by the success of path signatures in machine learning, and on the other hand, by the success of models from the theory of regularity structures in the analysis of PDEs. I will present a flexible definition of a model feature vector along with numerical experiments in which we combine these features with basic supervised linear regression to predict solutions to parabolic and dispersive PDEs with a given forcing and boundary conditions. Interestingly, in the dispersive case, the prediction power relies heavily on whether the boundary conditions are appropriately included in the model. The talk is based on the following joint work with Andris Gerasimovics and Hendrik Weber: https://arxiv.org/abs/2108.05879

Wed, 12 Jan 2022

09:00 - 10:00
Virtual

Learning and Learning to Solve PDEs

Bin Dong
(Peking University)
Further Information
Abstract

Deep learning continues to dominate machine learning and has been successful in computer vision, natural language processing, etc. Its impact has now expanded to many research areas in science and engineering. In this talk, I will mainly focus on some recent impacts of deep learning on computational mathematics. I will present our recent work on bridging deep neural networks with numerical differential equations, and how it may guide us in designing new models and algorithms for some scientific computing tasks. On the one hand, I will present some of our works on the design of interpretable data-driven models for system identification and model reduction. On the other hand, I will present our recent attempts at combining wisdom from numerical PDEs and machine learning to design data-driven solvers for PDEs and their applications in electromagnetic simulation.

Fri, 17 Dec 2021

11:45 - 13:15
Virtual

InFoMM CDT Group Meeting

James Harris, Meredith Ellis
(Mathematical Institute (University of Oxford))
Fri, 10 Dec 2021

15:00 - 16:00
Virtual

A topological approach to signatures

Darrick Lee
(EPFL)
Abstract

The path signature is a characterization of paths that originated in Chen's iterated integral cochain model for path spaces and loop spaces. More recently, it has been used to form the foundations of rough paths in stochastic analysis, and provides an effective feature map for sequential data in machine learning. In this talk, we return to the topological foundations in Chen's construction to develop generalizations of the signature.

Wed, 08 Dec 2021

13:45 - 16:30
L2

December CDT in Mathematics of Random Systems Seminars

Lancelot Da Costa, Zheneng Xie, Professor Terry Lyons
(Imperial College London and University of Oxford)
Further Information

Please email @email for the link to view talks remotely.

1:45-2:30 Lancelot Da Costa - Adaptive agents through active inference
2:30-3:15 Zheneng Xie - Scaling Limits of Random Graphs
3:15-3:30 Break
3:30-4:30 Professor Terry Lyons - From Mathematics to Data Science and Back

Abstract

Adaptive agents through active inference: The main fields of research that are used to model and realise adaptive agents are optimal control, reinforcement learning and active inference. Active inference is a probabilistic description of adaptive agents that is relatively less known to mathematicians, as it originated from neuroscience in the last decade. This talk presents the mathematical underpinnings of active inference, starting from fundamental considerations about agents that maintain their structural integrity in the face of environmental perturbations. Through this, we derive a probability distribution over actions, that describes decision-making under uncertainty in adaptive agents . Interestingly, this distribution has an interesting information geometric structure, combining, for instance, drives for exploration and exploitation, which may yield a principled answer to the exploration-exploitation trade-off. Preserving this geometric structure enables to realise adaptive agents in practice. We illustrate their behaviour with simulation examples and empirical comparisons with reinforcement learning.

Scaling Limits of Random Graphs: The scaling limit of directed random graphs remains relatively unexplored compared to their undirected counterparts. In contrast, many real-world networks, such as links on the world wide web, financial transactions and “follows” on Twitter, are inherently directed. Previous work by Goldschmidt and Stephenson established the scaling limit for the strongly connected components (SCCs) of the Erdős -- Rényi model in the critical window when appropriately rescaled. In this talk, we present a result showing the SCCs of another class of critical random directed graphs will converge when rescaled to the same limit. Central to the proof is an exploration of the directed graph and subsequent encodings of the exploration as real valued random processes. We aim to present this exploration algorithm and other key components of the proof.

From Mathematics to Data Science and Back: We give an overview of the interaction between rough path theory and data science at the current time.
 

 

Tue, 07 Dec 2021

14:00 - 15:00
Virtual

FFTA: Directed Network Laplacians and Random Graph Models

Xue Gong
(University of Edinburgh)
Abstract

We consider spectral methods that uncover hidden structures in directed networks. We establish and exploit connections between node reordering via (a) minimizing an objective function and (b) maximizing the likelihood of a random graph model. We focus on two existing spectral approaches that build and analyse Laplacian-style matrices via the minimization of frustration and trophic incoherence. These algorithms aim to reveal directed periodic and linear hierarchies, respectively. We show that reordering nodes using the two algorithms, or mapping them onto a specified lattice, is associated with new classes of directed random graph models. Using this random graph setting, we are able to compare the two algorithms on a given network and quantify which structure is more likely to be present. We illustrate the approach on synthetic and real networks, and discuss practical implementation issues. This talk is based on a joint work with Desmond Higham and Konstantinos Zygalakis. 

Article link: https://royalsocietypublishing.org/doi/10.1098/rsos.211144

Mon, 06 Dec 2021
14:15
L4

A non-existence result for balanced SU(3)-structures on cohomogeneity one manifolds

Izar Alonso Lorenzo
((Oxford University))
Abstract

The Hull--Strominger system is a system of non-linear PDEs on heterotic string theory involving a pair of Hermitian metrics $(g,h)$ on a six dimensional manifold $M$. One of these equations dictates the metric $g$ on $M$ to be conformally balanced. We will begin the talk by giving a description of the geometry of cohomogeneity one manifolds and SU(3)-structures. Then, we will look for solutions to the Hull--Strominger system in the cohomogeneity one setting. We show that a six-dimensional simply connected cohomogeneity one manifold under the almost effective action of a connected Lie group $G$ admits no $G$-invariant balanced non-Kähler SU(3)-structures. This is a joint work with F. Salvatore.

Fri, 03 Dec 2021
16:00
N4.01

G2 instantons in twisted M-theory

Jihwan Oh
(Oxford)
Further Information

It is also possible to join online via Zoom.

Abstract

Computing Donaldson-Thomas partition function of a G2 manifold has been a long standing problem. The key step for the problem is to understand the G2 instanton moduli space. I will discuss a string theory way to study the G2 instanton moduli space and explain how to compute the instanton partition function for a certain G2 manifold. An important insight comes from the twisted M-theory on the G2 manifold. This talk is based on a work with Michele del Zotto and Yehao Zhou.

Fri, 03 Dec 2021

16:00 - 17:00
L1

North Meets South

Candida Bowtell and Joshua Bull
(Mathematical Institute)
Abstract

This session will take place live in L1 and online. A Teams link will be shared 30 minutes before the session begins.

 

Candida Bowtell

Title: Chess puzzles: from recreational maths to fundamental mathematical structures

Abstract:
Back in 1848, in a German chess magazine, Max Bezzel asked how many ways there are to place 8 queens on a chessboard so that no two queens can attack one another. This question caught the attention of many, including Gauss, and was subsequently generalised. What if we want to place n non-attacking queens on an n by n chessboard? What if we embed the chessboard on the surface of a torus? How many ways are there to do this? It turns out these questions are hard, but mathematically interesting, and many different strategies have been used to attack them. We'll survey some results, old and new, including progress from this year.


 

Joshua Bull

Title: From Cancer to Covid: topological and spatial descriptions of immune cells in disease

Abstract:
Advances in medical imaging techniques mean that we have increasingly detailed knowledge of the specific cells that are present in different diseases. The locations of certain cells, like immune cells, gives clinicians clues about which treatments might be effective against cancer, or about how the immune system reacts to a Covid infection - but the more detailed this spatial data becomes, the harder it is for medics to analyse or interpret. Instead, we can turn to tools from topological data analysis, mathematical modelling, and spatial statistics to describe and quantify the relationships between different cell types in a wide range of medical images. This talk will demonstrate how mathematics can be used as a tool to advance our understanding of medicine, with a focus on immune cells in both cancer and covid-19.

Fri, 03 Dec 2021

14:00 - 15:00
L6

Fingers and Fractures: Instabilities in Viscoplastic Fluid Films

Thomasina Ball
(Warwick)
Abstract

The study of gravity currents has long been of interest due to their prevalence in industry and in nature, one such example being the spreading of viscoplastic (yield-stress) fluid films. When a viscoplastic fluid is extruded onto a flat plate, the resulting gravity current expands axisymmetrically when the surface is dry and rough. In this talk, I will discuss two instabilities that arise when (1) the no-slip surface is replaced by a free-slip surface; and (2) the flat plate is wet by a thin coating of water.

Fri, 03 Dec 2021

14:00 - 15:00
L3

When cardiac imaging meets computational modeling

Dr Vicky Wang
(Department of Radiology Stanford University)
Abstract

Over the past decades, the morbidity and mortality associated with cardiovascular disease have reduced due to advancements in patient care. However, cardiovascular disease remains the world’s leading cause of death, and the prevalence of myocardial pathologies remains significant. Continued advancements in diagnostics and therapeutics are needed to further drive down the social and economic burden of cardiac disease in both developed and developing countries. 

Routine clinical evaluation of patients with cardiovascular disease includes non-invasive imaging, such as echocardiography (echo), cardiac magnetic resonance imaging (MRI), and/or CT, and where appropriate, invasive investigation with cardiac catheterisation However, little clinical information is available regarding the linkage between structural and function remodelling of the heart and the intrinsic biomechanical properties of heart muscle which cannot be measured in patients with cardiovascular diseases. 

The lack of detailed mechanistic understanding about the change in biomechanical properties of heart muscle may play a significant role in non-specific diagnosis and patient management. Bioengineering approaches, such as computational modelling tools, provide the perfect platform to analyze a wealth of clinical data of individual patients in an objective and consistent manner to augment and enrich existing personalized clinical diagnoses and precise treatment planning by building 3D computational model of the patient's heart. 

In my presentation, I will present my research efforts in 1) developing integrative 3D computational modeling platform to enable model-based analysis of medical images of the heart; 2) studying the biomechanical mechanisms underpinning various forms of heart failure using pre-clinica experimental data; 3) applying personalized modeling pipeline to clinical heart failure patient data to non-invasively estimate mechanical properties of the heart muscle on a patient-specific basis; 4) performing in silico simulation of cardiac surgical procedures to evaluate efficacy of mitral clip in treating ischemic mitral regurgitation. 

My presentation aims to showcase the power of combining computational modeling and bioengineering technologies with medical imaging to enrich and enhance precision and personalized medicine. 

Fri, 03 Dec 2021

10:00 - 11:00
L4

Elucidation of chemical reaction mechanisms by covariance-map imaging of product scattering distributions.

Prof. Claire Vallance
(Department of Chemistry, University of Oxford)
Further Information

Claire brought a problem about exploding molecules to the OCCAM Mathematics and Chemistry Study Group in 2013 and those interactions led to important progress on analysing 2D imaging data on molecular Coulomb explosions using covariance map. The challenge she faces now is on formulating a mathematical expression for the covariance map over the relevant 3D distributions. I encourage all interested party to join us and especially those interested in image processing and inverse problem.