Tue, 28 Jan 2025
15:00
L6

The space of traces of certain discrete groups

Raz Slutsky
Abstract

A trace on a group is a positive-definite conjugation-invariant function on it. In the past couple of decades, the study of traces has led to exciting connections to the rigidity, stability, and dynamics of groups. In this talk, I will explain these connections and focus on the topological structure of the space of traces of some groups. We will see the different behaviours of these spaces for free groups vs. higher-rank lattices. This is based on joint works with Arie Levit, Joav Orovitz and Itamar Vigdorovich.

Tue, 28 Jan 2025
14:00
L6

Categorical valuations for polytopes and matroids

Nicholas Proudfoot
(All Souls, University of Oxford Visiting Fellow)
Abstract

Valulations (of polytopes or matroids) are very useful and very mysterious. After taking some time to explain this concept, I will categorify it, with the aim of making it both more useful and less mysterious.

Tue, 28 Jan 2025
13:00
L5

Symmetric impurities and constraints on their screening

Christian Copetti
(Oxford )
Abstract

"The question of whether an impurity can be screened by bulk degrees of freedom is central to the study of defects and to (variations of) the Kondo problem. In this talk I discuss how symmetry, generalized or not, can give serious constraints on the possible scenarios at long distances. These can be quantified in the UV where the defect is weakly coupled. I will give some examples of interesting symmetric defect RG flows in (1+1) and (2+1)d.

Based on https://arxiv.org/pdf/2412.18652 and work in progress."

Mon, 27 Jan 2025
16:30
L4

Sampling with Minimal Energy

Ed Saff
(Vanderbilt University)
Abstract

Minimal discrete energy problems arise in a variety of scientific contexts – such as crystallography, nanotechnology, information theory, and viral morphology, to name but a few.     Our goal is to analyze the structure of configurations generated by optimal (and near optimal)-point configurations that minimize the Riesz s-energy over a sphere in Euclidean space R^d and, more generally, over a bounded manifold. The Riesz s-energy potential, which is a generalization of the Coulomb potential, is simply given by 1/r^s, where r denotes the distance between pairs of points. We show how such potentials for s>d and their minimizing point configurations are ideal for use in sampling surfaces.

Connections to the results by Field's medalist M. Viazovska and her collaborators on best-packing and universal optimality in 8 and 24 dimensions will be discussed. Finally we analyze the minimization of a "k-nearest neighbor" truncated version of Riesz energy that reduces the order N^2 computation for energy minimization to order N log N , while preserving global and local properties.

Mon, 27 Jan 2025
16:00
C4

Applied analytic number theory

Cédric Pilatte
(University of Oxford)
Abstract

The security of many widely used communication systems hinges on the presumed difficulty of factoring integers or computing discrete logarithms. However, Shor's celebrated algorithm from 1994 demonstrated that quantum computers can perform these tasks in polynomial time. In 2023, Regev proposed an even faster quantum algorithm for factoring integers. Unfortunately, the correctness of his new method is conditional on an ad hoc number-theoretic conjecture. Using tools from analytic number theory, we establish a result in the direction of Regev's conjecture. This enables us to design a provably correct quantum algorithm for factoring and solving the discrete logarithm problem, whose efficiency is comparable to Regev's approach. In this talk, we will give an accessible account of these developments.

Mon, 27 Jan 2025
15:30
L3

Adapted optimal transport for stochastic processes

Dr Daniel Bartl
(University of Vienna)
Abstract
In this talk, I will discuss adapted transport theory and the adapted Wasserstein distance, which extend classical transport theory from probability measures to stochastic processes by incorporating the temporal flow of information. This adaptation addresses key limitations of classical transport when dealing with time-dependent data. 
I will highlight how, unlike other topologies for stochastic processes, the adapted Wasserstein distance ensures continuity for fundamental probabilistic operations, including the Doob decomposition, optimal stopping, and stochastic control. Additionally, I will explore how adapted transport preserves many desirable properties of classical transport theory, making it a powerful tool for analyzing stochastic systems.
Mon, 27 Jan 2025
15:30
L5

(cancelled)

(Oxford University)
Mon, 27 Jan 2025
13:00
L6

Spectrum of 4d near-BPS black holes and their dual CFT

Alice Lüscher
Abstract

 While extremal black hole microstates are reproduced by index calculations, the study of near-BPS black holes requires special care to account for quantum fluctuations. A semiclassical analysis indicates that the spectrum of such black holes has a large extremal degeneracy followed by a mass gap up to a continuum of non-BPS states. The inclusion of a theta angle term alters the properties of the spectrum (Witten effect shifting the mass gap and mixed 't Hooft anomaly). This journal club will study two papers by Toldo and Heydeman, [2412.03695] and [2412.03697] where they study 4d near-BPS black holes. As we shall see, a key point of their derivation is the reduction to 2d JT gravity. The dual CFTs are ABJM and some class R (non lagrangian) theories. Since these theories are strongly coupled, the gravity analysis offers a powerful tool to describe their specturm at finite temperature.

Fri, 24 Jan 2025
15:00
L4

Efficient computation of the persistent homology of Rips complexes

Katharine Turner
(Australian National University)

Note: we would recommend to join the meeting using the Teams client for best user experience.

Abstract

Given a point cloud in Euclidean space and a fixed length scale, we can create simplicial complexes (called Rips complexes) to represent that point cloud using the pairwise distances between the points. By tracking how the homology classes evolve as we increase that length scale, we summarise the topology and the geometry of the “shape” of the point cloud in what is called the persistent homology of its Rips filtration. A major obstacle to more widespread take up of persistent homology as a data analysis tool is the long computation time and, more importantly, the large memory requirements needed to store the filtrations of Rips complexes and compute its persistent homology. We bypass these issues by finding a “Reduced Rips Filtration” which has the same degree-1 persistent homology but with dramatically fewer simplices.

The talk is based off joint work is with Musashi Koyama, Facundo Memoli and Vanessa Robins.

Fri, 24 Jan 2025 14:00 -
Fri, 31 Jan 2025 16:00
L6

INTRODUCTION TO DISCRETE ENERGY ON RECTIFIABLE SETS

Ed Saff
(Vanderbilt University)
Abstract

Discrete and continuous energy problems that arise in a variety of scientific contexts are introduced, along with their fundamental existence and uniqueness results. Particular emphasis will be on Riesz and Gaussian pair potentials and their connections with best-packing and the discretization of manifolds. The latter application leads to the asymptotic theory (as N → ∞) for N-point configurations that minimize energy when the potential is hypersingular (short-range). For fixed N, the determination of such minimizing configurations on the d-dimensional unit sphere S d is especially significant in a range of contexts that include coding theory, discrete geometry, and physics. We will review linear programming methods for proving the optimality of configurations on S d , including Cohn and Kumar’s theory of universal optimality. The following reference will be made available during the short course: Discrete Energy on Rectifiable Sets, by S. Borodachov, D.P. Hardin and E.B. Saff, Springer Monographs in Mathematics, 2019.

Sessions:

Friday, 24 January 14:00-16:00

Friday, 31 January 14:00-16:00

Fri, 24 Jan 2025

12:00 - 13:00
Common Room

Junior Algebra Social

Abstract

The Junior Algebra and Representation Theory Seminar will kick-off the start of Hilary Term with a social event in the common room. Come to catch up with your fellow students and maybe play a board game or two. Afterwards we'll have lunch together.

Fri, 24 Jan 2025

11:00 - 12:00
L4

Combining computational modelling, deep generative learning and imaging to infer new biology

Prof Simon Walker-Samuel
(Dept of Imaging, UCL)
Abstract

Deep learning algorithms provide unprecedented opportunities to characterise complex structure in large data, but typically in a manner that cannot easily be interpreted beyond the 'black box'. We are developing methods to leverage the benefits of deep generative learning and computational modelling (e.g. fluid dynamics, solid mechanics, biochemistry), particularly in conjunction with biomedical imaging, to enable new insights into disease to be made. In this talk, I will describe our applications in several areas, including modelling drug delivery in cancer and retinal blood vessel loss in diabetes, and how this is leading us into the development of personalised digital twins.

Thu, 23 Jan 2025
16:00
Lecture Room 4

Continuity of heights and complete intersections in toric varieties

Michal Szachniewicz
((University of Oxford))
Abstract

I will describe the contents of a joint project with Pablo Destic and Nuno Hultberg. In the paper we confirm a conjecture of Roberto Gualdi regarding a formula for the average height of the intersection of twisted (by roots of unity) hyperplanes in a toric variety. I will introduce the 'GVF analytification' of a variety, which is defined similarly as the Berkovich analytification, but with norms replaced by heights. Moreover, I will discuss some motivations coming from (continuous) model theory and Arakelov geometry.

Thu, 23 Jan 2025

14:00 - 15:00
Lecture Room 3

Multi-Index Monte Carlo Method for Semilinear Stochastic Partial Differential Equations

Abdul Lateef Haji-Ali
(Heriot Watt)
Abstract

We present an exponential-integrator-based multi-index Monte Carlo (MIMC) method for the weak approximation of mild solutions to semilinear stochastic partial differential equations (SPDEs). Theoretical results on multi-index coupled solutions of the SPDE are provided, demonstrating their stability and the satisfaction of multiplicative error estimates. Leveraging this theory, we develop a tractable MIMC algorithm. Numerical experiments illustrate that MIMC outperforms alternative approaches, such as multilevel Monte Carlo, particularly in low-regularity settings.

Thu, 23 Jan 2025
13:00
N3.12

Aspects of anomalies - Part 2

Alison Warman
Abstract

Anomalies in quantum systems are present when a classical symmetry is broken by quantum effects. They give rise to physical predictions and constraints. This talk will focus on the mathematical features of anomalies of continuous, ordinary, symmetries. In the first part, we will review the topological nature of anomalies, in particular the connection to the Atiyah-Singer index theorem and its non-perturbative path-integral computation by Fujikawa. We will then discuss how anomalies and their associated (topological) Chern-Simons polynomials are related to BRST cohomology via the Stora-Zumino chain of descent equations, explaining the connection to the two-step descent procedure reviewed in the talk by Alice Lüscher last term.

 

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Thu, 23 Jan 2025

12:00 - 13:00
L3

Optimal design of odd active solids

Anton Souslov
(University of Cambridge)
Further Information

Anton Souslov is an Associate Professor of Theoretical Statistical Physics working on the theory of soft materials, including mechanical metamaterials, active matter, topological states, and polymer physics.

Abstract

Active solids consume energy to allow for actuation and shape change not possible in equilibrium. I will first introduce active solids in comparison with their active fluid counterparts. I will then focus on active solids composed of non-reciprocal springs and show how so-called odd elastic moduli arise in these materials. Odd active solids have counter-intuitive elastic properties and require new design principles for optimal response. For example, in floppy lattices, zero modes couple to microscopic non-reciprocity, which destroys odd moduli entirely in a phenomenon reminiscent of rigidity percolation. Instead, an optimal odd lattice will be sufficiently soft to activate elastic deformations, but not too soft. These results provide a theoretical underpinning for recent experiments and point to the design of novel soft machines.

 

 

Thu, 23 Jan 2025

12:00 - 12:30
Lecture room 5

Efficient Adaptive Regularized Tensor Methods

Yang Liu
(Mathematical Institute (University of Oxford))
Abstract

High-order tensor methods employing local Taylor approximations have attracted considerable attention for convex and nonconvex optimisation. The pth-order adaptive regularisation (ARp) approach builds a local model comprising a pth-order Taylor expansion and a (p+1)th-order regularisation term, delivering optimal worst-case global and local convergence rates. However, for p≥2, subproblem minimisation can yield multiple local minima, and while a global minimiser is recommended for p=2, effectively identifying a suitable local minimum for p≥3 remains elusive.
This work extends interpolation-based updating strategies, originally proposed for p=2, to cases where p≥3, allowing the regularisation parameter to adapt in response to interpolation models. Additionally, it introduces a new prerejection mechanism to discard unfavourable subproblem minimisers before function evaluations, thus reducing computational costs for p≥3.
Numerical experiments, particularly on Chebyshev-Rosenbrock problems with p=3, indicate that the proper use of different minimisers can significantly improve practical performance, offering a promising direction for designing more efficient high-order methods.

Thu, 23 Jan 2025

11:00 - 12:00
L5

A new axiom for Q_p^ab and non-standard methods for perfectoid fields

Leo Gitin
(University of Oxford)
Abstract

The class of henselian valued fields with non-discrete value group is not well-understood. In 2018, Koenigsmann conjectured that a list of seven natural axioms describes a complete axiomatisation of Q_p^ab, the maximal extension of the p-adic numbers Q_p with abelian Galois group, which is an example of such a valued field. Informed by the recent work of Jahnke-Kartas on the model theory of perfectoid fields, we formulate an eighth axiom (the discriminant property) that is not a consequence of the other seven. Revisiting work by Koenigsmann (the Galois characterisation of Q_p) and Jahnke-Kartas, we give a uniform treatment of their underlying method. In particular, we highlight how this method yields short, non-standard model-theoretic proofs of known results (e.g. finite extensions of perfectoid fields are perfectoid).

Wed, 22 Jan 2025
16:00
L6

Skein Lasagna Modules

Colin McCulloch
(University of Oxford)
Abstract

Donaldson proved that there are pairs of 4-manifolds that are homeomorphic but not diffeomorphic, a phenomenon that does not appear for any lower dimensional manifolds. Until recently, proving this for compact manifolds has required smooth 4-manifold invariants coming from gauge theory. In this talk, we will give an introduction to an exciting new smooth 4-manifold invariant of Morrison Walker and Wedich, called a skein lasagna module that does not rely on gauge theory. Further, this talk will not assume any knowledge of 4-manifold topology.

Wed, 22 Jan 2025
11:00
L6

Adapted Wasserstein distance between continuous Gaussian processes

Yifan Jiang
(Mathematical Institute)
Abstract
Adapted Wasserstein distance is a generalization of the classical Wasserstein distance for stochastic processes. It captures not only the spatial information but also the temporal information induced by the processes. In this talk, I will focus on the adapted Wasserstein distance between continuous Gaussian processes. An explicit formula in terms of their canonical representations will be given. These results cover rough processes such as fractional Brownian motions and fractional Ornstein--Uhlenbeck processes. If time permits, I will also show that the optimal coupling between two 1D additive fractional SDE is driven by the synchronous coupling of the noise.
We introduce a 'causal factorization' as an infinite dimensional Cholesky decomposition on Hilbert spaces. This naturally bridges the probabilistic notion 'causal transport' and the algebraic object 'nest algebra'.  Such a factorization is closely related to the (non)canonical representation of Gaussian processes which is of independent interest. This talk is based on a work-in-progress with Fang Rui Lim.
Tue, 21 Jan 2025
16:00
C3

Quantum symmetries on Kirchberg algebras

Kan Kitamura
(Riken iThems)
Abstract

In subfactor theory, it has been observed that operator algebras often admit symmetries beyond mere groups, sometimes called quantum symmetries. Besides recent substantial progress on the classification programs of simple amenable C*-algebras and group actions on them, there has been increasing interest in their quantum symmetries. This talk is devoted to an attempt to ensure the existence of various quantum symmetries on simple amenable C*-algebras, at least in the purely infinite case, by providing a systematic way to produce them. As a technical ingredient, a simplicity criterion for certain Pimsner algebras is given.

Tue, 21 Jan 2025

16:00 - 17:00
L3

Quo Vadis

Nati Linial
(Hebrew University of Jerusalem)
Abstract

Paraphrasing the title of Riemann’s famous lecture of 1854 I ask: What is the most rudimentary notion of a geometry? A possible answer is a path system: Consider a finite set of “points” $x_1,…,x_n$ and provide a recipe how to walk between $x_i$ and $x_j$ for all $i\neq j$, namely decide on a path $P_{ij}$, i.e., a sequence of points that starts at $x_i$ and ends at $x_j$, where $P_{ji}$ is $P_{ij}$, in reverse order. The main property that we consider is consistency. A path system is called consistent if it is closed under taking subpaths. What do such systems look like? How to generate all of them? We still do not know. One way to generate a consistent path system is to associate a positive number $w_{ij}>0$ with every pair and let $P_{ij}$ be the corresponding $w$-shortest path between $x_i$ and $x_j$. Such a path system is called metrical. It turns out that the class of consistent path systems is way richer than the metrical ones.

My main emphasis in this lecture is on what we don’t know and wish to know, yet there is already a considerable body of work that we have done on the subject.

The new results that I will present are joint with my student Daniel Cizma as well as with him and with Maria Chudnovsky.

Tue, 21 Jan 2025
16:00
L6

Typical hyperbolic surfaces have an optimal spectral gap

Laura Monk
(University of Bristol )
Abstract
The first non-zero Laplace eigenvalue of a hyperbolic surface, or its spectral gap, measures how well-connected the surface is: surfaces with a large spectral gap are hard to cut in pieces, have a small diameter and fast mixing times. For large hyperbolic surfaces (of large area or large genus g, equivalently), we know that the spectral gap is asymptotically bounded above by 1/4. The aim of this talk is to present an upcoming article, joint with Nalini Anantharaman, where we prove that most hyperbolic surfaces have a near-optimal spectral gap. That is to say, we prove that, for any ε>0, the Weil-Petersson probability for a hyperbolic surface of genus g to have a spectral gap greater than 1/4-ε goes to one as g goes to infinity. This statement is analogous to Alon’s 1986 conjecture for regular graphs, proven by Friedman in 2003. I will present our approach, which shares many similarities with Friedman’s work, and relies on creating cancellations in the trace method.
 
The focus of this talk will be mostly analytic as I will present its geometric components at the GGT seminar. Both talks will be disjoint and independent, with the intention that they can be viewed either separately or together.
Tue, 21 Jan 2025
15:30
L4

Deformations and lifts of Calabi-Yau varieties in characteristic p

Lukas Brantner
(Oxford)
Abstract

Derived algebraic geometry allows us to study formal moduli problems via their tangent Lie algebras. After briefly reviewing this general paradigm, I will explain how it sheds light on deformations of Calabi-Yau varieties. 
In joint work with Taelman, we prove a mixed characteristic analogue of the Bogomolov–Tian–Todorov theorem, which asserts that Calabi-Yau varieties in characteristic $0$ are unobstructed. Moreover, we show that ordinary Calabi–Yau varieties in characteristic $p$ admit canonical (and algebraisable) lifts to characteristic $0$, generalising results of Serre-Tate for abelian varieties and Deligne-Nygaard for K3 surfaces. 
If time permits, I will conclude by discussing some intriguing questions related to our canonical lifts.  
 

Tue, 21 Jan 2025
15:00
L6

Counting non-simple closed geodesics on random hyperbolic surfaces

Laura Monk
Abstract
The aim of this talk is to present new results related to the length spectrum of random hyperbolic surfaces. The Weil-Petersson model is a beautiful probabilistic model that was popularised by Mirzakhani to study random hyperbolic surfaces. In this continuous model, it is easy to argue that there exists a density function V_g(l) which "counts" how many closed geodesics of length l an average surface of genus g contains. In the case where we only count simple geodesics (with no self-intersections), Mirzakhani proved explicit formulas for this density, writing it as a polynomial function that can be interpreted in terms of volumes of moduli spaces. I will present joint work with Nalini Anantharaman where we obtain new explicit formulas for any fixed topology. Notably, I will present new coordinate systems on Teichmüller spaces in which the Weil-Petersson volume has a surprisingly simple expression.
 
Though purely geometric, those results were obtained in a project related to the spectral gap of the Laplacian. I will present applications of the techniques presented in this talk to this problem at the RMT seminar. Both talks will be disjoint and independent, with the intention that they can be viewed either separately or together.