An elementary proof of RH for curves over finite fields
Abstract
The Riemann hypothesis (RH) is one of the great open problems in mathematics. It arose from the study of prime numbers in an analytic context, and—as often occurs in mathematics—developed analogies in an algebraic setting, leading to the influential Weil conjectures. RH for curves over finite fields was proven in the 1940’s by Weil using algebraic-geometric methods. In this talk, we discuss an alternate proof of this result by Stepanov (and Bombieri), using only elementary properties of polynomials. Over the decades, the proof has been whittled down to a 5 page gem! Time permitting, we also indicate connections to exponential sums and the original RH.