Thu, 02 Apr 2020
16:00

What is the Jiang Su algebra (Virtual Seminar)

Sam Evington
(University of Oxford)
Further Information

This is the first meeting of the virtual operator algebra seminar in collaboration with colleagues in Glasgow and UCLan.  The seminar will take place by zoom, and the meeting details will be available here.

Tue, 31 Mar 2020
14:00
Virtual

Erdős covering systems

Rob Morris
(IMPA)
Further Information

This is the first instalment of the new Oxford Discrete Maths and Probability seminar, held via Zoom. Please see the main seminar site here for further details.

Links: slides and video recording (to come)

Abstract

A covering system of the integers is a finite collection of arithmetic progressions whose union is the set of integers $\mathbb{Z}$. The study of these objects was initiated in 1950 by Erdős, and over the following decades he asked a number of beautiful questions about them. Most famously, his so-called 'minimum modulus problem' was resolved in 2015 by Hough, who proved that in every covering system with distinct moduli, the minimum modulus is at most $10^{16}$.

In this talk I will describe a simple and general method of attacking covering problems that was inspired by Hough's proof. We expect that this technique, which we call the 'distortion method', will have further applications in combinatorics.

This talk is based on joint work with Paul Balister, Béla Bollobás, Julian Sahasrabudhe and Marius Tiba.

Tue, 17 Mar 2020
14:15
L4

TBA (cancelled)

Peter Schneider
(Universitat Munster)
Tue, 17 Mar 2020

12:00 - 13:00
C1

Nestedness in bipartite networks

Matteo Bruno
(IMT Lucca)
Abstract

Many real networks feature the property of nestedness, i.e. the neighbours of nodes with a few connections are hierarchically nested within the neighbours of nodes with more connections. Despite the abstract simplicity of this notion, different mathematical definitions of nestedness have been proposed, sometimes giving contrasting results. Moreover, there is an ongoing debate on the statistical significance of nestedness, since even random networks where the number of connections (degree) of each node is fixed to its empirical value are typically as nested as real-world ones. In this talk we show unexpected effects due to the recent finding that random networks where the degrees are enforced as hard constraints (microcanonical ensembles) are thermodynamically different from random networks where the degrees are enforced as soft constraints (canonical ensembles). We show that if the real network is perfectly nested, then the two ensembles are trivially equivalent and the observed nestedness, independently of its definition, is indeed an unavoidable consequence of the empirical degrees. On the other hand, if the real network is not perfectly nested, then the two ensembles are not equivalent and alternative definitions of nestedness can be even positively correlated in the canonical ensemble and negatively correlated in the microcanonical one. This result disentangles distinct notions of nestedness captured by different metrics and highlights the importance of making a principled choice between hard and soft constraints in null models of ecological networks.

[1] Bruno, M., Saracco, F., Garlaschelli, D., Tessone, C. J., & Caldarelli, G. (2020). Nested mess: thermodynamics disentangles conflicting notions of nestedness in ecological networks. arXiv preprint arXiv:2001.11805.
 

Mon, 16 Mar 2020

15:45 - 16:45
Virtual

On the asymptotic optimality of the comb strategy for prediction with expert advice (cancelled)

ERHAN BAYRAKTAR
(University of Michigan)
Abstract

For the problem of prediction with expert advice in the adversarial setting with geometric stopping, we compute the exact leading order expansion for the long time behavior of the value function using techniques from stochastic analysis and PDEs. Then, we use this expansion to prove that as conjectured in Gravin, Peres and Sivan the comb strategies are indeed asymptotically optimal for the adversary in the case of 4 experts.
 

Mon, 16 Mar 2020

14:15 - 15:15
Virtual

Conservative diffusion as entropic gradient flux (cancelled)

IOANNIS KARATZAS
(Columbia University)
Abstract

We provide a detailed, probabilistic interpretation, based on stochastic calculus, for the variational characterization of conservative diffusion as entropic gradient flux. Jordan, Kinderlehrer, and Otto showed in 1998 that, for diffusions of Langevin-Smoluchowski type, the Fokker-Planck probability density flow minimizes the rate of relative entropy dissipation, as measured by the distance traveled in terms of the quadratic Wasserstein metric in the ambient space of configurations. Using a very direct perturbation analysis we obtain novel, stochastic-process versions of such features. These are valid along almost every trajectory of the diffusive motion in both the forward and, most transparently, the backward, directions of time. The original results follow then simply by taking expectations. As a bonus, we obtain the HWI inequality of Otto and Villani relating relative entropy, Fisher information and Wasserstein distance; and from it the celebrated log-Sobolev, Talagrand and Poincare inequalities of functional analysis. (Joint work with W. Schachermayer and B. Tschiderer, from the University of Vienna.)

 

Fri, 13 Mar 2020

16:00 - 17:00
L2

North Meets South

Thomas Oliver and Ebrahim Patel
Abstract


Speaker: Thomas Oliver

Title: Hyperbolic circles and non-trivial zeros

Abstract: L-functions can often be considered as generating series of arithmetic information. Their non-trivial zeros are the subject of many famous conjectures, which offer countless applications to number theory. Using simple geometric observations in the hyperbolic plane, we will study the relationship between the zeros of L-functions and their characterisation amongst more general Dirichlet series.
 

Speaker: Ebrahim Patel

Title: From trains to brains: Adventures in Tropical Mathematics.

Abstract: Tropical mathematics uses the max and plus operator to linearise discrete nonlinear systems; I will present its popular application to solve scheduling problems such as railway timetabling. Adding the min operator generalises the system to allow the modelling of processes on networks. Thus, I propose applications such as disease and rumour spreading as well as neuron firing behaviour.


 

Fri, 13 Mar 2020

14:00 - 15:00
L1

The Big Mathematical Quiz of the Year

Dr Richard Earl
Abstract

Fancy a fun afternoon on the final Friday afternoon of term? Then come along, either by yourself or pre-organised teams of up to four, to this week’s Fridays@2 for the first ever Big Mathematical Quiz of the Year!

Fri, 13 Mar 2020

14:00 - 15:00
L6

Lava flows: theory, laboratory experiments and field data

Herbert Huppert
(University of Cambridge)
Abstract

World wide, unconstrained lava flows kill people almost each year and cause extensive damage, costing millions of pounds. Defending against lava flows is possible by using topographic variations sensibly, placing buildings considerately, constructing defending walls of appropriate size and the like. Hinton, Hogg and Huppert have recently published three rather mathematical papers outlining how viscous flows down slopes interact with a variety of geometrical shapes; evaluating, in particular, the conditions under which “dry zones” form – safe places for people and belongings – and the size of a protective wall required to defend a given size building.

Following a desktop experimental demonstration, we will discuss these analyses and their consequences.

Thu, 12 Mar 2020

16:00 - 17:00
L5

Growth in soluble linear groups over finite fields

Brendan Murphy
(University of Bristol)
Abstract

In joint work with James Wheeler, we show that if a subset $A$ of $GL_n(\mathbb{F}_q)$ is a $K$-approximate group and the group $G$ it generates is soluble, then there are subgroups $U$ and $S$ of $G$ and a constant $k$ depending only on $n$ such that:

$A$ quickly generates $U$: $U\subseteq A^k$,
$S$ contains a large proportion of $A$: $|A^k\cap S| \gg K^{-k}|A|, and
$S/U$ is nilpotent.

Briefly: approximate soluble linear groups over any finite field are (almost) finite by nilpotent.

The proof uses a sum-product theorem and exponential sum estimates, as well as some representation theory, but the presentation will be mostly self-contained.

Thu, 12 Mar 2020

16:00 - 17:30
L3

Modelling Dementia

Professor Alain Goriely
(Mathematical Institute)
Abstract

Neurodegenerative diseases such as Alzheimer’s or Parkinson’s are devastating conditions with poorly understood mechanisms and no known cure. Yet a striking feature of these conditions is the characteristic pattern of invasion throughout the brain, leading to well-codified disease stages visible to neuropathology and associated with various cognitive deficits and pathologies. In this talk, I will show that by linking new mathematical theories to recent progress in imaging, we can unravel some of the universal features associated with dementia and, more generally, brain functions. In particular, I will outline interesting mathematical problems and ideas that naturally appear in the process.

Thu, 12 Mar 2020

16:00 - 17:00
L4

Regularity and stability of feedback relaxed controls

Yufei Zhang
Abstract

In this talk, we shall propose a relaxed control regularization with general exploration rewards to design robust feedback controls for multi-dimensional continuous-time stochastic exit time problems. We establish that the regularized control problem admits a H\”{o}lder continuous feedback control, and demonstrate that both the value function and the feedback control of the regularized control problem are Lipschitz stable with respect to parameter perturbations. Moreover, we show that a pre-computed feedback relaxed control has a robust performance in a perturbed system, and derive a first-order sensitivity equation for both the value function and optimal feedback relaxed control. These stability results provide a theoretical justification for recent reinforcement learning heuristics that including an exploration reward in the optimization objective leads to more robust decision making. We finally prove first-order monotone convergence of the value functions for relaxed control problems with vanishing exploration parameters, which subsequently enables us to construct the pure exploitation strategy of the original control problem based on the feedback relaxed controls. This is joint work with Christoph Reisinger (available at https://arxiv.org/abs/2001.03148).
 

Thu, 12 Mar 2020

14:00 - 15:00
L4

The Statistical Finite Element Method

Mark Girolami
(University of Cambridge)
Abstract

The finite element method (FEM) is one of the great triumphs of applied mathematics, numerical analysis and software development. Recent developments in sensor and signalling technologies enable the phenomenological study of systems. The connection between sensor data and FEM is restricted to solving inverse problems placing unwarranted faith in the fidelity of the mathematical description of the system. If one concedes mis-specification between generative reality and the FEM then a framework to systematically characterise this uncertainty is required. This talk will present a statistical construction of the FEM which systematically blends mathematical description with observations.

>

Thu, 12 Mar 2020
11:30
C4

Speeds of hereditary properties and mutual algebricity

Caroline Terry
(Chicago)
Abstract

A hereditary graph property is a class of finite graphs closed under isomorphism and induced subgraphs.  Given a hereditary graph property H, the speed of H is the function which sends an integer n to the number of distinct elements in H with underlying set {1,...,n}.  Not just any function can occur as the speed of hereditary graph property.  Specifically, there are discrete ``jumps" in the possible speeds.  Study of these jumps began with work of Scheinerman and Zito in the 90's, and culminated in a series of papers from the 2000's by Balogh, Bollob\'{a}s, and Weinreich, in which essentially all possible speeds of a hereditary graph property were characterized.  In contrast to this, many aspects of this problem in the hypergraph setting remained unknown.  In this talk we present new hypergraph analogues of many of the jumps from the graph setting, specifically those involving the polynomial, exponential, and factorial speeds.  The jumps in the factorial range turned out to have surprising connections to the model theoretic notion of mutual algebricity, which we also discuss.  This is joint work with Chris Laskowski.

Wed, 11 Mar 2020

17:30 - 18:30
L1

Oxford Mathematics Public Lecture. Alan Champneys: Why pedestrian bridges wobble - synchronisation and the wisdom of the crowd

Alan Champneys
(University of Bristol)
Further Information

There is a beautiful mathematical theory of how independent agents tend to synchronise their behaviour when weakly coupled. Examples include how audiences spontaneously rhythmically applause and how nearby pendulum clocks tend to move in sync. Another famous example is that of the London Millennium Bridge. On the day it opened, the bridge underwent unwanted lateral vibrations that are widely believed to be due to pedestrians synchronising their footsteps.

In this talk Alan will explain how this theory is in fact naive and there is a simpler mathematical theory that is more consistent with the facts and which explains how other bridges have behaved including Bristol's Clifton Suspension Bridge. He will also reflect on the nature of mathematical modelling and the interplay between mathematics, engineering and the real world. 

Alan Champneys is a Professor of Applied Non-linear Mathematics at the University of Bristol. 

Please email @email to register.

Watch live:
https://twitter.com/OxUniMaths
https://www.facebook.com/OxfordMathematics/
https://livestream.com/oxuni/Champneys

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Wed, 11 Mar 2020
16:00
C1

Horocyclic product of Gromov hyperbolic spaces.

Tom Ferragut
(Université de Montpellier)
Abstract

Gromov hyperbolicity is a property to metric spaces that generalises the notion of negative curvature for manifolds.
After an introduction about these spaces, we will explain the construction of horocyclic products related to lamplighter groups, Baumslag solitar groups and the Sol geometry.
We will describe the shape of geodesics in them, and present rigidity results on their quasi-isometries due to Farb, Mosher, Eskin, Fisher and Whyte.

Tue, 10 Mar 2020
16:00
C1

Pick's theorem and the Kadison-Singer problem

Michael Hartz
(University of Saarbrucken)
Abstract

Pick's theorem is a century-old theorem in complex analysis about interpolation with bounded analytic functions. The Kadison-Singer problem was a question about states on $C^*$-algebras originating in the work of Dirac on the mathematical description of quantum mechanics. It was solved by Marcus, Spielman and Srivastava a few years ago.

I will talk about Pick's theorem, the Kadison-Singer problem and how the two can be brought together to solve interpolation problems with infinitely many nodes. This talk is based on joint work with Alexandru Aleman, John McCarthy and Stefan Richter.

Tue, 10 Mar 2020

15:30 - 16:30
L6

Random matrices, random Young diagrams, and some random operators

Sasha Sodin
(Queen Mary University of London)
Abstract

The rows of a Young diagram chosen at random with respect to the Plancherel measure are known to share some features with the eigenvalues of the Gaussian Unitary Ensemble. We shall discuss several ideas, going back to the work of Kerov and developed by Biane and by Okounkov, which to some extent clarify this similarity. Partially based on joint work with Jeong and on joint works in progress with Feldheim and Jeong and with Täufer.

Tue, 10 Mar 2020
14:30
L2

Random smoothies: C-infinity but nowhere analytic

Nick Trefethen
Abstract

Since Weierstrass it has been known that there are functions that are continuous but nowhere differentiable.  A beautiful example (with probability 1) is any Brownian path.  Brownian paths can be constructed either in space, via Brownian bridge, or in Fourier space, via random Fourier series.

What about functions, which we call "smoothies", that are $C^\infty$ but nowhere analytic?  This case is less familiar but analogous, and again one can do the construction either in space or Fourier space.  We present the ideas and illustrate them with the new Chebfun $\tt{smoothie}$ command.  In the complex plane, the same idea gives functions analytic in the open unit disk and $C^\infty$ on the unit circle, which is a natural boundary.

Tue, 10 Mar 2020
14:15
L4

An uncountable Mittag-Leffler condition with applications to p-adic locally convex vector spaces

Andrea Pulita
(Universite Grenoble-Alpes)
Abstract

Mittag-Leffler condition ensures the exactness of the inverse limit of short exact sequences indexed on a partially ordered set admitting a countable cofinal subset. We extend Mittag-Leffler condition by relatively relaxing the countability assumption. As an application we prove an exactness result about the completion functor in the category of ultrametric locally convex vector spaces, and in particular we prove that a strict morphism between these spaces has closed image if its kernel is Fréchet.