14:00
14:00
Elastic deformations of a thin component moved by a robot
Abstract
Many manufacturing processes require the use of robots to transport parts around a factory line. Some parts, which are very thin (e.g. car doors)
are prone to elastic deformations as they are moved around by a robot. These should be avoided at all cost. A problem that was recently raised by
F.E.E. (Fleischmann Elektrotech Engineering) at the ESGI 158 study group in Barcelona was to ascertain how to determine the stresses of a piece when
undergoing a prescribed motion by a robot. We present a simple model using Kirschoff-Love theory of flat plates and how this can be adapted. We
outline how the solutions of the model can then be used to determine the stresses.
12:00
Asymptotic charges in gravity
Abstract
I will give an overview of my recent research on the definition of asymptotic charges in asymptotically flat spacetimes, including the definition of subleading and dual BMS charges and the relation to the conserved Newman-Penrose charges at null infinity.
The modelling power of random graphs
Abstract
Random graphs were introduced as a convenient example for demonstrating the impossibility of ‘complete disorder’ by Erdos, who also thought that these objects will never become useful in the applied areas outside of pure mathematics. In this talk, I will view random graphs as objects in the field of applied mathematics and discus how the application-driven objectives have set new directions for studying random graphs. I will focus on characterising the sizes of connected components in graphs with a given degree distribution, on the percolation-like processes on such structures, and on generalisations to the coloured graphs. These theoretical questions have interesting implications for studying resilience of networks with nontrivial structures, and for materials science where they explain kinetics-driven phase transitions. Even more surprisingly, the results reveal intricate connections between random graphs and non-linear partial differential equations indicating new possibilities for their analysis.
Periods and the motivic Galois group
Abstract
A long time ago, Grothendieck made some conjectures. This has resulted in some things.
16:00
The $L^1$ semi-group of the multi-dimensional Burgers equation
Abstract
The Kruzkhov's semi-group of a scalar conservation law extends as a semi-group over $L^1$, thanks to its contraction property. M. Crandall raised in 1972 the question of whether its trajectories can be distributional, entropy solutions, or if they are only "abstract" solutions. We solve this question in the case of the multi-dimensional Burgers equation, which is a paradigm for non-degenerate conservation laws. Our answer is the consequence of dispersive estimates. We first establish $L^p$-decay rate by applying the recently discovered phenomenon of Compensated Integrability. The $L^\infty$-decay follows from a De Giorgi-style argument. This is a collaboration with Luis Sivestre (University of Chicago).
15:45
Variants of Quantum sl(2) and invariants of links involving flat connections
Abstract
Witten-Reshetikhin-Turaev quantum invariants of links and 3 dimensional manifolds are obtained from quantum sl(2). There exist different versions of quantum sl(2) leading to other families of invariants. We will briefly overview the original construction and then discuss two variants. First one, so called unrolled quantum sl(2), allows construction of invariants of 3-manifolds involving C* flat connections. In simplest case it recovers Reidemeister torsion. The second one is the non restricted version at a root of unity. It enables construction of invariants of links equipped with a gauge class of SL(2,C) flat connection. This is based respectively on joined work with Costantino, Geer, Patureau and Geer, Patureau, Reshetikhin.
Market manipulation in order-driven markets
Abstract
We model the trading strategy of an investor who spoofs the limit order book (LOB) to increase the revenue obtained from selling a position in a security. The strategy employs, in addition to sell limit orders (LOs) and sell market orders (MOs), a large number of spoof buy LOs to manipulate the volume imbalance of the LOB. Spoofing is illegal, so the strategy trades off the gains that originate from spoofing against the expected financial losses due to a fine imposed by the financial authorities. As the expected value of the fine increases, the investor relies less on spoofing, and if the expected fine is large enough, it is optimal for the investor not too spoof the LOB because the fine outweighs the benefits from spoofing. The arrival rate of buy MOs increases because other traders believe that the spoofed buy-heavy LOB shows the true supply of liquidity and interpret this imbalance as an upward pressure in prices. When the fine is low, our results show that spoofing considerably increases the revenues from liquidating a position. The profit of the spoof strategy is higher than that of a no-spoof strategy for two reasons. First, the investor employs fewer MOs to draw the inventory to zero and benefits from roundtrip trades, which stem from spoof buy LOs that are ‘inadvertently’ filled and subsequently unwound with sell LOs. Second, the midprice trends upward when the book is buy-heavy, therefore, as time evolves, the spoofer sells the asset at better prices (on average).
The Aldous diffusion
Abstract
The Aldous diffusion is a conjectured Markov process on the
space of real trees that is the continuum analogue of discrete Markov
chains on binary trees. We construct this conjectured process via a
consistent system of stationary evolutions of binary trees with k
labelled leaves and edges decorated with diffusions on a space of
interval partitions constructed in previous work by the same authors.
This pathwise construction allows us to study and compute path
properties of the Aldous diffusion including evolutions of projected
masses and distances between branch points. A key part of proving the
consistency of the projective system is Rogers and Pitman’s notion of
intertwining. This is joint work with Noah Forman, Soumik Pal and
Douglas Rizzolo.
14:15
Morse theory on singular spaces
Abstract
Morse theory has a long history with many spectacular applications in different areas of mathematics. In this talk I will explain an extension of the main theorem of Morse theory that works for a large class of functions on singular spaces. The main example to keep in mind is that of moment maps on varieties, and I will present some applications to the topology of symplectic quotients of singular spaces.
12:45
Comments on de Sitter horizons & Sphere Partition Functions
Abstract
We discuss properties of the cosmological horizon of a de Sitter universe, and compare to those of ordinary black holes. We consider both the Lorentzian and Euclidean picture. We discuss the relation to the sphere partition function and give a group-theoretic picture in terms of the de Sitter group. Time permitting we discuss some properties of three-dimensional de Sitter theories with higher spin particles.
Mathematics: the past, present and future - "Patterns in the primes"
Abstract
Prime numbers have been looked at for centuries, but some of the most basic questions about them are still major unsolved problems. These problems began as idle curiosities, but have grown to become hugely important not only in pure mathematics, but also have many applications to the real world. I'll talk about some of these quests to find patterns in the sequence of prime numbers.
Systems biology for single cell RNA-Seq data
Abstract
Single cell RNA-Seq data is challenging to analyse due to problems like dropout and cell type identification. We present a novel clustering
approach that applies mixture models to learn interpretable clusters from RNA-Seq data, and demonstrate how it can be applied to publicly
available scRNA-Seq data from the mouse brain. Having inferred groupings of the cells, we can then attempt to learn networks from the data. These
approaches are widely applicable to single cell RNA-Seq datasets where there is a need to identify and characterise sub-populations of cells.
The Annual OCIAM Dinner
[[{"fid":"57044","view_mode":"media_815x460","fields":{"format":"media_815x460","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false},"type":"media","field_deltas":{"1":{"format":"media_815x460","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false}},"attributes":{"class":"media-element file-media-815x460","data-delta":"1"}}]]
Multicellular Calculus
The lecture will take place in the Michael Dummett Lecture Theatre (Blue Boar quad, Christ Church).
Eigenvector overlaps for large random matrices and applications to financial data
Abstract
Whereas the spectral properties of random matrices has been the subject of numerous studies and is well understood, the statistical properties of the corresponding eigenvectors has only been investigated in the last few years. We will review several recent results and emphasize their importance for cleaning empirical covariance matrices, a subject of great importance for financial applications.
The Riemann zeta function in short intervals
Abstract
I will describe some new-ish results on the average and maximum size of the Riemann zeta function in a "typical" interval of length 1 on the critical line. A (hopefully) interesting feature of the proofs is that they reduce the problem for the zeta function to an analogous problem for a random model, which can then be solved using various probabilistic techniques.
Eigenvector overlaps of random matrices and financial applications
Abstract
Whereas the spectral properties of random matrices has been the subject of numerous studies and is well understood, the statistical properties of the corresponding eigenvectors has only been investigated in the last few years. We will review several recent results and emphasize their importance for cleaning empirical covariance matrices, a subject of great importance for financial applications.
The Toda integrable system in geometry and representation theory
Abstract
The Toda integrable system was originally designed as a specific model for lattice field theories. Following Kostant's insights, we will explain how it naturally arises from the representation theory of Lie algebras, and present some more recent work relating it to cotangent bundles of Lie groups and the topology of Affine Grassmannians.
Quantifying the Estimation Error of Principal Component
Abstract
(Joint work with: Jüri Lember, Heinrich Matzinger, Raul Kangro)
Principal component analysis is an important pattern recognition and dimensionality reduction tool in many applications and are computed as eigenvectors
of a maximum likelihood covariance that approximates a population covariance. The eigenvectors are often used to extract structural information about the variables (or attributes) of the studied population. Since PCA is based on the eigen-decomposition of the proxy covariance rather than the ground-truth, it is important to understand the approximation error in each individual eigenvector as a function of the number of available samples. The combination of recent results of Koltchinskii & Lounici [8] and Yu, Wang & Samworth [11] yields such bounds. In the presented work we sharpen these bounds and show that eigenvectors can often be reconstructed to a required accuracy from a sample of strictly smaller size order.
Courant-sharp eigenvalues of the Laplacian on Euclidean domains
Abstract
Let $\Omega \subset \mathbb{R}^n$, $n \geq 2$, be a bounded, connected, open set with Lipschitz boundary.
Let $u$ be an eigenfunction of the Laplacian on $\Omega$ with either a Dirichlet, Neumann or Robin boundary condition.
If an eigenfunction $u$ associated with the $k$--th eigenvalue has exactly $k$ nodal domains, then we call it a Courant-sharp eigenfunction. In this case, we call the corresponding eigenvalue a Courant-sharp eigenvalue.
We first discuss some known results for the Courant-sharp Dirichlet and Neumann eigenvalues of the Laplacian on Euclidean domains.
We then discuss whether the Robin eigenvalues of the Laplacian on the square are Courant-sharp.
This is based on joint work with B. Helffer (Université de Nantes).
11:30
Partial associativity and rough approximate groups
Abstract
Given a finite set X, is an easy exercise to show that a binary operation * from XxX to X which is injective in each variable separately, and which is also associative, makes (X,*) into a group. Hrushovski and others have asked what happens if * is only partially associative - do we still get something resembling a group? The answer is known to be yes (in a strong sense) if almost all triples satisfy the associative law. In joint work with Tim Gowers, we consider the so-called `1%' regime, in which we only have an epsilon fraction of triples satisfying the associative law. In this regime, the answer turns out to be rather more subtle, involving certain group-like structures which we call rough approximate groups. I will discuss these objects, and try to give a sense of how they arise, by describing a somewhat combinatorial interpretation of partial associativity.
16:00
Subgroups of direct products of right-angled Artin groups.
Abstract
Right-angled Artin groups (RAAGs) were first introduced in the 70s by Baudisch and further developed in the 80s by Droms.
They have attracted much attention in Geometric Group Theory. One of the many reasons is that it has been shown that all hyperbolic 3-manifold groups are virtually finitely presented subgroups of RAAGs.
In the first part of the talk, I will discuss some of their interesting properties. I will explain some of their relations with manifold groups and their importance in finiteness conditions for groups.
In the second part, I will focus on my PhD project concerning subgroups of direct products of RAAGs.