Mon, 26 Nov 2018
17:00
L6

Lattices and correction terms

Kyle Larsson
(Alfréd Rényi Institute of Mathematics)
Abstract

 I will introduce two obstructions for a rational homology 3-sphere to smoothly bound a rational homology 4-ball- one coming from Donaldson's theorem on intersection forms of definite 4-manifolds, and the other coming from correction terms in Heegaard Floer homology. If L is a nonunimodular definite lattice, then using a theorem of Elkies we will show that whether L embeds in the standard definite lattice of the same rank is completely determined by a collection of lattice correction terms, one for each metabolizing subgroup of the discriminant group. As a topological application this gives a rephrasing of the obstruction coming from Donaldson's theorem. Furthermore, from this perspective it is easy to see that if the obstruction to bounding a rational homology ball coming from Heegaard Floer correction terms vanishes, then (under some mild hypotheses) the obstruction from Donaldson's theorem vanishes too.

Mon, 26 Nov 2018

16:00 - 17:00
L4

Models for fluid boundary layers: beyond the Prandtl equation?

Anne-Laure Dalibard
(Paris VI)
Abstract

The Prandtl equation was derived in 1904 by Ludwig Prandtl in order to describe the behavior of fluids with small viscosity around a solid obstacle. Over the past decades, several results of ill-posedness in Sobolev spaces have been proved for this equation. As a consequence, it is natural to look for more sophisticated boundary layer models, that describe the coupling with the outer Euler flow at a higher order. Unfortunately, these models do not always display better mathematical properties, as I will explain in this talk. This is a joint work with Helge Dietert, David Gérard-Varet and Frédéric Marbach.

Mon, 26 Nov 2018
15:45
L6

Orthogonal group and higher categorical adjoints

David Ayala
(Montana State University)
Abstract


In this talk I will articulate and contextualize the following sequence of results.

The Bruhat decomposition of the general linear group defines a stratification of the orthogonal group.
Matrix multiplication defines an algebra structure on its exit-path category in a certain Morita category of categories.  
In this Morita category, this algebra acts on the category of n-categories -- this action is given by adjoining adjoints to n-categories. 

This result is extracted from a larger program -- entirely joint with John Francis, some parts joint with Nick Rozenblyum -- which proves the cobordism hypothesis.  

Mon, 26 Nov 2018

15:45 - 16:45
L3

Stochastic Euler-Lagrangian condition in semi-martingale optimal transport

LIU CHONG
(ETH Zurich)
Abstract

In semimartingale optimal transport problem, the functional to be minimized can be considered as a “stochastic action”, which is the expectationof a “stochastic Lagrangian” in terms of differential semimartingale characteristics. Therefore it would be natural to apply variational calculus approach to characterize the minimizers. R. Lassalle and A.B. Cruzeiro have used this approach to establish a stochastic Euler-Lagrangian condition for semimartingale optimal transport by perturbing the drift terms. Motivated by their work, we want to perform the same type of calculus for martingale optimal transport problem. In particular, instead of only considering perturbations in the drift terms, we try to find a nice variational family for volatility,and then obtain the stochastic Euler-Lagrangian condition for martingale laws. In the first part of this talk we will mention some basic results regarding the existence of minimizers in semimartingale optimal transport problem. In the second part, we will introduce Lassalle and Cruzeiro’s  work, and give a simple example related to this topic, where the variational family is induced by time-changes; and then we will introduce some potential problems that are needed to be solved.

Mon, 26 Nov 2018

14:15 - 15:15
L3

Quenched CLT for random walk in divergence-free random drift field

BALINT TOTH
(Bristol University)
Abstract

We prove the quenched version of the central limit theorem for the displacement of a random walk in doubly stochastic random environment, under the $H_{-1}$-condition, with slightly stronger,  $L^{2+\epsilon}$ (rather than $L^2$) integrability condition on the stream tensor. On the way we extend Nash's moment bound to the non-reversible, divergence-free drift case.  

 

Mon, 26 Nov 2018

14:15 - 15:15
L4

Amplituhedron meets Jeffrey-Kirwan residue

Tomasz Lukowski
(University of Hertfordshire)
Abstract

Amplituhedra are mathematical objects generalising the notion of polytopes into the Grassmannian. Proposed as a geometric construction encoding scattering amplitudes in the four-dimensional maximally supersymmetric Yang-Mills theory, they are mathematically interesting objects on their own. In my talk I strengthen the relation between scattering amplitudes and geometry by linking the amplituhedron to the Jeffrey-Kirwan residue, a powerful concept in symplectic and algebraic geometry. I focus on a particular class of amplituhedra in any dimension, namely cyclic polytopes, and their even-dimensional
conjugates. I show how the Jeffrey-Kirwan residue prescription allows to extract the correct amplituhedron canonical differential form in all these cases. Notably, this also naturally exposes the rich combinatorial structures of amplituhedra, such as their regular triangulations

Mon, 26 Nov 2018

13:00 - 14:00
N3.12

Mathematrix lunches - Implicit bias

Abstract

This will be the final mathematrix meeting for the term and we will be discussing Implicit Bias. In short, Implicit Bias is to do with perceptions and judgements we unconsciously make about people based on preconceptions we have about certain appearances, background or other characteristics. Even if we are not aware of making these judgements, they can affect our actions and decisions none-the-less. For a slightly longer introduction about this topic and how it can relate to academia, we suggest reading the following article: http://science.sciencemag.org/content/352/6289/1067.full

In this session we hope to explain more about what implicit bias is, how it might affect us, and discuss ways to avoid implicit bias and make ourselves and others more aware of it.

Everyone is welcome! Monday, 1300-1400, Quillen Room (N3.12), with lunch provided.

Mon, 26 Nov 2018
12:45
L3

Loop Amplitudes in the Scattering Equations Formalism

Ricardo Monteiro
(QMUL)
Abstract

 I will describe recent progress in the study of scattering amplitudes in gauge theory and gravity at loop level, using the formalism of the scattering equations. The scattering equations relate the kinematics of the scattering of massless particles to the moduli space of the sphere. Underpinned by ambitwistor string theory, this formalism provides new insights into the relation between tree-level and loop-level contributions to scattering amplitudes. In this talk, I will describe results up to two loops on how loop integrands can be constructed as forward-limits of trees. One application is the loop-level understanding of the colour-kinematics duality, a symmetry of perturbative gauge theory which relates it to perturbative gravity.

 

Fri, 23 Nov 2018
16:00
L1

Developing learning and teaching

Vicky Neale and Delia O'Rourke
Abstract


Are you teaching intercollegiate classes or tutorials this term? Would you like to explore inclusive teaching strategies that could help all students make the most of your sessions? In this interactive workshop, we'll explore strategies that have been found effective. This will be a self-contained session, but will also be a good introduction to the "Developing Learning and Teaching" course offered by MPLS for graduate students and early career researchers. The session will be led by Vicky Neale (Mathematics) and Delia O'Rourke (Oxford Learning Institute). 
 

Fri, 23 Nov 2018

14:00 - 15:00
L1

Dissertation: presenting a thesis

Dr Richard Earl
Abstract

This session is particularly aimed at fourth-year and OMMS students who are completing a dissertation this year. The talk will be given by Dr Richard Earl who chairs Projects Committee. For many of you this will be the first time you have written such an extended piece on mathematics. The talk will include advice on planning a timetable, managing the  workload, presenting mathematics, structuring the dissertation and creating a narrative, providing references and avoiding plagiarism.

Thu, 22 Nov 2018

16:00 - 17:00
L6

The eigencurve at Eisenstein weight one points

Alice Pozzi
(UCL)
Abstract

In 1973, Serre observed that the Hecke eigenvalues of Eisenstein series can be p-adically interpolated. In other words, Eisenstein series can be viewed as specializations of a p-adic family parametrized by the weight. The notion of p-adic variations of modular forms was later generalized by Hida to include families of ordinary cuspforms. In 1998, Coleman and Mazur defined the eigencurve, a rigid analytic space classifying much more general p-adic families of Hecke eigenforms parametrized by the weight. The local nature of the eigencurve is well-understood at points corresponding to cuspforms of weight k ≥ 2, while the weight one case is far more intricate.

In this talk, we discuss the geometry of the eigencurve at weight one Eisenstein points. Our approach consists in studying the deformation rings of certain (deceptively simple!) Artin representations. Via this Galois-theoretic method, we obtain the q-expansion of some non-classical overconvergent forms in terms of p-adic logarithms of p-units in certain number field. Finally, we will explain how these calculations suggest a different approach to the Gross-Stark conjecture.

Thu, 22 Nov 2018
16:00
C5

TBA

Nicholas Wilkins
(Oxford University)
Thu, 22 Nov 2018

16:00 - 17:30
L3

Variational models and partial differential equations for mathematical imaging

Carola Schönlieb
(University of Cambridge)
Abstract

Images are a rich source of beautiful mathematical formalism and analysis. Associated mathematical problems arise in functional and non-smooth analysis, the theory and numerical analysis of partial differential equations, harmonic, stochastic and statistical analysis, and optimisation. Starting with a discussion on the intrinsic structure of images and their mathematical representation, in this talk we will learn about variational models for image analysis and their connection to partial differential equations, and go all the way to the challenges of their mathematical analysis as well as the hurdles for solving these - typically non-smooth - models computationally. The talk is furnished with applications of the introduced models to image de-noising, motion estimation and segmentation, as well as their use in biomedical image reconstruction such as it appears in magnetic resonance imaging.

Thu, 22 Nov 2018

14:00 - 15:00
L4

Some new finding for preconditioning of elliptic problems

Prof Kent-Andre Mardal
(University of Oslo)
Abstract


In this talk I will present two recent findings concerning the preconditioning of elliptic problems. The first result concerns preconditioning of elliptic problems with variable coefficient K by an inverse Laplacian. Here we show that there is a close relationship between the eigenvalues of the preconditioned system and K. 
The second results concern the problem on mixed form where K approaches zero. Here, we show a uniform inf-sup condition and corresponding robust preconditioning. 

Thu, 22 Nov 2018

12:00 - 13:00

Probability Session

Andrew Allan
(University of Oxford)
Abstract

An informal session for DPhil students, ECRs and undergraduates with an interest in probability. The aim is to gain exposure to areas outside of your own research interests in an informal and accessible way.

Wed, 21 Nov 2018
16:00
C1

Haken's algorithm for recognising the unknot

Mehdi Yazdi
(Oxford University)
Abstract


I will discuss the basics of normal surface theory, and how they were used to give an algorithm for deciding whether a given diagram represents the unknot. This version is primarily based on Haken's work, with simplifications from Schubert and Jaco-Oertel.
 

Wed, 21 Nov 2018
11:00
N3.12

The Monoidal Marriage of Stucture and Physics

Nicola Pinzani
(University of Oxford)
Abstract

What does abstract nonsense (category theory) have to do with the apparently opposite proverbial concreteness of physics? In this talk I will try to convey the importance of understanding physical theories from a compositional and structural perspective, where the fundamental logic of interaction between systems becomes the real protagonist. Firstly, we will see how different classes of symmetric monoidal categories can be used to model physical processes in a very natural and intuitive way. We will then explore the claim that category theory is not only useful in providing a unified framework, but it can be also used to perfect and modify preexistent models. In this direction, I will show how the introduction of a trace in the symmetric monoidal category describing QIT can be used to talk about quantum interactions induced by cyclic causal relationships.

Tue, 20 Nov 2018
16:00
L5

Definably simple groups in valued fields

Dugald Macpherson
(Leeds)
Abstract

I will discuss joint work with Gismatullin, Halupczok, and Simonetta on the following problem: given a henselian valued field of characteristic 0, possibly equipped with analytic structure (in the sense stemming originally from Denef and van den Dries), describe the possibilities for a definable group G in the valued field sort which is definably almost simple, that is, has no proper infinite definable normal subgroups. We also have results for an algebraically closed valued field K in characteristic p, but assuming also that the group is a definable subgroup of GL(n, K).

Tue, 20 Nov 2018

15:45 - 16:45
L4

A Steenrod-square-type operation for quantum cohomology and Floer theory

Nicholas Wilkins
(Oxford)
Abstract

The (total) Steenrod square is a ring homomorphism from the cohomology of a topological space to the Z/2-equivariant cohomology of this space, with the trivial Z/2-action. Given a closed monotone symplectic manifold, one can define a deformed notion of the Steenrod square for quantum cohomology, which will not in general be a ring homomorphism, and prove some properties of this operation that are analogous to properties of the classical Steenrod square. We will then link this, in a more general setting, to a definition by Seidel of a similar operation on Floer cohomology.
 

Tue, 20 Nov 2018

14:30 - 15:00

Mixed methods for stress-assisted diffusion problems

Ricardo Ruiz Baier
(Oxford)
Abstract

In this talk I will introduce a new mathematical model for the computational modelling of the active contraction of cardiac tissue using stress-assisted conductivity as the main mechanism for mechanoelectrical feedback. The coupling variable is the Kirchhoff stress and so the equations of hyperelasticity are written in mixed form and a suitable finite element formulation is proposed. Next I will introduce a simplified version of the coupled system, focusing on its analysis in terms of solvability and stability of continuous and discrete mixed-primal formulations, and the convergence of these methods will be illustrated through two numerical tests.