16:00
Gradient-plasticity: modelling and analysis.
Abstract
The linearization leads to a thermodynamically admissible model of infinitesimal plasticity involving only the Curl of the non-symmetric plastic distortion p. Linearized spatial and material covariance under constant infinitesimal rotations is satisfied.
Uniqueness of strong solutions of the infinitesimal model is obtained if two non-classical boundary conditions on the plastic distortion p are introduced: dtp.τ=0 on the microscopically hard boundary ΓD⊂∂Ω and [Curlp].τ=0 on the microscopically free boundary ∂Ω\ΓD, where τ are the tangential vectors at the boundary ∂Ω. Moreover, I show that a weak reformulation of the infinitesimal model allows for a global in-time solution of the corresponding rate-independent initial boundary value problem. The method of choice are a formulation as a quasivariational inequality with symmetric and coercive bilinear form, following the abstract framework proposed by Reddy. Use is made of new Hilbert-space suitable for dislocation density dependent plasticity.