Wed, 22 Sep 2021

09:00 - 10:00
Virtual

Stochastic Flows and Rough Differential Equations on Foliated Spaces

Yuzuru Inahama
(Kyushu University)
Further Information
Abstract

Stochastic differential equations (SDEs) on compact foliated spaces were introduced a few years ago. As a corollary, a leafwise Brownian motion on a compact foliated space was obtained as a solution to an SDE. In this work we construct stochastic flows associated with the SDEs by using rough path theory, which is something like a 'deterministic version' of Ito's SDE theory.

This is joint work with Kiyotaka Suzaki.

Wed, 08 Sep 2021

09:00 - 10:00
Virtual

Co-clustering Analysis of Multidimensional Big Data

Hong Yan
(City University of Hong Kong)
Further Information
Abstract

Although a multidimensional data array can be very large, it may contain coherence patterns much smaller in size. For example, we may need to detect a subset of genes that co-express under a subset of conditions. In this presentation, we discuss our recently developed co-clustering algorithms for the extraction and analysis of coherent patterns in big datasets. In our method, a co-cluster, corresponding to a coherent pattern, is represented as a low-rank tensor and it can be detected from the intersection of hyperplanes in a high dimensional data space. Our method has been used successfully for DNA and protein data analysis, disease diagnosis, drug therapeutic effect assessment, and feature selection in human facial expression classification. Our method can also be useful for many other real-world data mining, image processing and pattern recognition applications.

Wed, 18 Aug 2021

11:00 - 12:00
Virtual

Learnable intra-layer feedback response in Spiking Neural Networks

Anton-David Almasan
(Thales Group)
Further Information

[[{"fid":"63050","view_mode":"default","fields":{"format":"default"},"link_text":"Research_proposal___Learnable_feedback_response.pdf","type":"media","field_deltas":{"1":{"format":"default"}},"attributes":{"class":"media-element file-default","data-delta":"1"}}]]

Tue, 06 Jul 2021

17:00 - 18:00

Mathemalchemy: a mathematical and artistic adventure - Ingrid Daubechies

Ingrid Daubechies
(Duke University)
Further Information

A collaborative art installation celebrating the joy, creativity and beauty of mathematics has been in the works for the past two years, and will soon be ready to emerge from its long gestation. The original idea, conceived by textile artist Dominique Ehrmann and mathematician Ingrid Daubechies inspired a team of 24 Mathemalchemists to work together, transforming the whole conception in the process, and bringing their individual expertise and whimsy to a large installation.

Despite the challenges of Covid-19, the team created a fantasy world where herons haul up nets loaded with special knots in the Knotical scene, a tortoise meditates while ambling along Zeno's path, chipmunks and squirrels ponder the mysteries of prime numbers, and a cat named Arnold bakes cookies that tile the plane in the Mandelbrot bakery; and a myriad more mathematical ideas swirl through the air.

This presentation will introduce some of the ideas and components, and show the team at work. Here's a sneak preview:
www.mathemalchemy.org
@mathemalchemy

Multi-award winning Ingrid Daubechies is James B. Duke Distinguished Professor of Mathematics and Electrical and Computer Engineering at Duke University.

Watch (no need to register and it will remain available after broadcast):
Oxford Mathematics YouTube

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

[[{"fid":"62753","view_mode":"media_397x223","fields":{"format":"media_397x223","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false},"type":"media","field_deltas":{"1":{"format":"media_397x223","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false}},"attributes":{"class":"media-element file-media-397x223","data-delta":"1"}}]]

Tue, 29 Jun 2021
14:00
Virtual

Asymptotics for the wave equation on black hole spacetimes

Stefanos Aretakis
(Toronto)
Abstract

We will present the precise late-time asymptotics for scalar fields on both extremal and sub-extremal black holes including the full Reissner-Nordstrom family and the subextremal Kerr family. Asymptotics for higher angular modes will be presented for all cases. Applications in observational signatures will also be discussed. This work is joint with Y. Angelopoulos (Caltech) and D. Gajic (Cambridge)

Mon, 28 Jun 2021
11:30
Virtual

Feynman integrals from the viewpoint of Picard-Lefschetz theory

Marko Berghoff
(Oxford)
Abstract

I will present work in progress with Erik Panzer, Matteo Parisi and Ömer Gürdoğan on the analytic structure of Feynman(esque) integrals: We consider integrals of meromorphic differential forms over relative cycles in a compact complex manifold, the underlying geometry encoded in a certain (parameter dependant) subspace arrangement (e.g. Feynman integrals in their parametric representation). I will explain how the analytic struture of such integrals can be studied via methods from differential topology; this is the seminal work by Pham et al (using tools and methods developed by Leray, Thom, Picard-Lefschetz etc.). Although their work covers a very general setup, the case we need for Feynman integrals has never been worked out in full detail. I will comment on the gaps that have to be filled to make the theory work, then discuss how much information about the analytic structure of integrals can be derived from a careful study of the corresponding subspace arrangement.

Fri, 25 Jun 2021

11:45 - 13:15
Virtual

InFoMM CDT Group Meeting

Joel Dyer, Constantin Puiu, Markus Dablander
(Mathematical Institute)
Thu, 24 Jun 2021

17:00 - 18:00

Equal Opportunity Cities (this lecture is open to everyone)

Sandy Pentland
(MIT)
Further Information

Using data from four continents, we show that diversity of consumption and of diversity of social exposure are perhaps the single most powerful predictor of life outcomes such as increasing neighborhood GDP, increasing individual wealth, and promoting intergenerational mobility, even after controlling for variables such as population density, housing price, and geographic centrality. The effects of diversity in promoting opportunity are causal, and inequality in opportunity stems more from social norms that promote segregation than from physical segregation. Policies to promote more equal opportunities within cities seem practical.

You can register here. Everyone is welcome.

Tue, 22 Jun 2021
11:00
Virtual

90 minutes of CCC

Roger Penrose et al.
Abstract

This is a joint GR-QFT seminar, to celebrate in advance the 90th birthday of Roger Penrose later in the summer, comprising 9 talks on conformal cyclic cosmology.  The provisional schedule is as follows:

11:00 Roger Penrose (Oxford, UK) : The Initial Driving Forces Behind CCC

11:10 Paul Tod (Oxford, UK) : Questions for CCC

11:20 Vahe Gurzadyan (Yerevan, Armenia): CCC predictions and CMB

11:30 Krzysztof Meissner (Warsaw, Poland): Perfect fluids in CCC

11:40 Daniel An (SUNY, USA) : Finding information in the Cosmic Microwave Background data

11:50 Jörg Frauendiener (Otago, New Zealand) : Impulsive waves in de Sitter space and their impact on the present aeon

12:00 Pawel Nurowski (Warsaw, Poland and Guangdong Technion, China): Poincare-Einstein expansion and CCC

12:10 Luis Campusano (FCFM, Chile) : (Very) Large Quasar Groups

12:20 Roger Penrose (Oxford, UK) : What has CCC achieved; where can it go from here?

Mon, 21 Jun 2021

16:00 - 17:00
Virtual

Correlations of almost primes

Natalie Evans
(KCL)
Abstract

The Hardy-Littlewood generalised twin prime conjecture states an asymptotic formula for the number of primes $p\le X$ such that $p+h$ is prime for any non-zero even integer $h$. While this conjecture remains wide open, Matom\"{a}ki, Radziwi{\l}{\l} and Tao proved that it holds on average over $h$, improving on a previous result of Mikawa. In this talk we will discuss an almost prime analogue of the Hardy-Littlewood conjecture for which we can go beyond what is known for primes. We will describe some recent work in which we prove an asymptotic formula for the number of almost primes $n=p_1p_2 \le X$ such that $n+h$ has exactly two prime factors which holds for a very short average over $h$.

Mon, 21 Jun 2021

16:00 - 17:00

On Set-valued Backward SDEs and Related Issues in Set-valued Stochastic Analysis

JIN MA
(University of Southern California)
Abstract

Abstract: In this talk we try to establish an analytic framework for studying Set-Valued Backward Stochastic Differential Equations (SVBSDE for short), motivated largely by the current studies of dynamic set-valued risk measures for multi-asset or network-based financial models. Our framework will be based on the notion of Hukuhara difference between sets, in order to compensate the lack of “inverse” operation of the traditional Minkowski addition, whence the vector space structure, in traditional set-valued analysis. We shall examine and establish a useful foundation of set-valued stochastic analysis under this algebraic framework, including some fundamental issues regarding Aumann-Itˆo integrals, especially when it is connected to the martingale representation theorem. We shall identify some fundamental challenges and propose some extensions of the existing theory that are necessary to study the SVBSDEs. This talk is based on the joint works with C¸ a˘gın Ararat and Wenqian Wu.

Mon, 21 Jun 2021
14:15
Virtual

Floer homotopy theory and Morava K-theory

Andrew Blumberg
(University of Texas at Austin)
Abstract

I will describe joint work with Abouzaid which constructs a stable homotopy theory refinement of Floer homology that has coefficients in the Morava K-theory spectra. The classifying spaces of finite groups satisfy Poincare duality for the Morava K-theories, which allows us to use this version of Floer homology to produce virtual fundamental chains for moduli spaces of Floer trajectories. As an application, we prove the Arnold conjecture for ordinary cohomology with coefficients in finite fields.

Fri, 18 Jun 2021

16:00 - 17:00
Virtual

Ethics and responsible innovation - what is it and how does it affect our research in mathematics?

Helena Webb
(University of Oxford)
Abstract

How aware should we be of letting AI make decisions on prison sentences? Or what is our responsibility in ensuring that mathematics does not predict another global stock crash?

In this talk, Helena will outline how we can view ethics and responsibility as central to processes of innovation and describe her experiences applying this perspective to teaching in the Department of Computer Science. There will be a chance to open up discussion about how this same approach can be applied in other Departments here in Oxford.

Helena is an interdisciplinary researcher working in the Department of Computer Science. She works on projects that involve examining the social impacts of computer-based innovations and identifying the ways in which these innovations can better meet societal needs and empower users. Helena is very passionate about the need to embed ethics and responsibility into processes of learning and research in order to foster technologies for the social good.

Fri, 18 Jun 2021

14:00 - 15:00
Virtual

Jacobson's Commutativity Problem

Mike Daas
(Leiden University)
Abstract

It is a well-known fact that Boolean rings, those rings in which $x^2 = x$ for all $x$, are necessarily commutative. There is a short and completely elementary proof of this. One may wonder what the situation is for rings in which $x^n = x$ for all $x$, where $n > 2$ is some positive integer. Jacobson and Herstein proved a very general theorem regarding these rings, and the proof follows a widely applicable strategy that can often be used to reduce questions about general rings to more manageable ones. We discuss this strategy, but will also focus on a different approach: can we also find ''elementary'' proofs of some special cases of the theorem? We treat a number of these explicit computations, among which a few new results.

Fri, 18 Jun 2021

14:00 - 15:00
Virtual

Analysis of temporal event sequences: challenges and opportunities in healthcare

Dr Maria-Cruz Villa Uriol
(Department of Computer Science The University of Sheffield)
Abstract

Our society is witnessing an exponential growth of data being generated. Among the various data types being routinely collected, event logs are available in a wide variety of domains. Despite historical and structural digitalisation challenges, healthcare is an example where the analysis of event logs might bring a new revolution.

In this talk, I will present our recent efforts in analysing and exploring temporal event data sequences extracted from event logs. Our visual analytics approach is able to summarise and seamlessly explore large volumes of complex event data sequences. We are able to easily derive observations and findings that otherwise would have required significant investment of time and effort.  To facilitate the identification of findings, we use a hierarchical clustering approach to cluster sequences according to time and a novel visualisation environment.  To control the level of detail presented to the analyst, we use a hierarchical aggregation tree and an Align-Score-Simplify strategy based on an information score.   To show the benefits of this approach, I will present our results in three real world case studies: CUREd, Outpatient clinics and MIMIC-III. These will respectively cover the analysis of calls and responses of emergency services, the efficiency of operation of two outpatient clinics, and the evolution of patients with atrial fibrillation hospitalised in an acute and critical care unit. To finalise the talk, I will share our most recent work in the analysis of clinical events extracted from Electronic Health Records for the study of multimorbidity.

Fri, 18 Jun 2021

13:30 - 17:00

Groups and Geometry in the South East

Piotr Przytycki, Elia Fioravanti, Rylee Lyman
(McGill & Bonn & Rutgers-Newark)
Further Information

Tits Alternative in dimension 2

1:30-2:30PM

Piotr Przytycki (McGill)

A group G satisfies the Tits alternative if each of its finitely generated subgroups contains a non-abelian free group or is virtually solvable. I will sketch a proof of a theorem saying that if G acts geometrically on a simply connected nonpositively curved complex built of equilateral triangles, then it satisfies the Tits alternative. This is joint work with Damian Osajda.

Coarse-median preserving automorphisms

2:45-3:45PM

Elia Fioravanti (Bonn)

We study fixed subgroups of automorphisms of right-angled Artin and Coxeter groups. If Phi is an untwisted automorphism of a RAAG, or an arbitrary automorphism of a RACG, we prove that Fix(Phi) is finitely generated and undistorted. Up to replacing Phi with a power, the fixed subgroup is actually quasi-convex with respect to the standard word metric (which implies that it is separable and a virtual retract, by work of Haglund and Wise). Our techniques also apply to automorphisms of hyperbolic groups and to certain automorphisms of hierarchically hyperbolic groups. Based on arXiv:2101.04415.

Some new CAT(0) free-by-cyclic groups

4:00-5:00PM

Rylee Lyman (Rutgers-Newark)

I will construct several infinite families of polynomially-growing automorphisms of free groups whose mapping tori are CAT(0) free-by-cyclic groups. Such mapping tori are thick, and thus not relatively hyperbolic. These are the first families comprising infinitely many examples for each rank of the nonabelian free group; they contrast strongly with Gersten's example of a thick free-by-cyclic group which cannot be a subgroup of a CAT(0) group.

 

Fri, 18 Jun 2021

13:00 - 13:30
Virtual

Homogenisation to Link Scales in Tendon Tissue Engineering

Amy Kent
(Mathematical Institute (University of Oxford))
Abstract

Tendon tissue engineering aims to grow functional tissue in the lab. Tissue is grown inside a bioreactor which controls both the mechanical and biochemical environment. As tendon cells alter their behaviour in response to mechanical stresses, designing suitable bioreactor loading regimes forms a key component in ensuring healthy tissue growth.  

Linking the forces imposed by the bioreactor to the shear stress experienced by individual cell is achieved by homogenisation using multiscale asymptotics. We will present a continuum model capturing fluid-structure interaction between the nutrient media and the fibrous scaffold where cells grow. Solutions reflecting different experimental conditions will be discussed in view of the implications for shear stress distribution experienced by cells across the bioreactor.  

Fri, 18 Jun 2021
12:45

Generalized entropy in topological string theory

Gabriel Wong
(Fudan University)
Abstract

The holographic entanglement entropy formula identifies the generalized entropy of the bulk AdS spacetime with the entanglement entropy of the boundary CFT. However the bulk microstate interpretation of the generalized entropy remains poorly understood. Progress along this direction requires understanding how to define Hilbert space factorization and entanglement entropy in the bulk closed string theory.   As a toy model for AdS/CFT, we study the entanglement entropy of closed strings in the topological A model, which enjoys a gauge-string duality.   We define a notion of generalized entropy for closed strings on the resolved conifold using the replica trick.   As in AdS/CFT, we find this is dual to (defect) entanglement entropy in the dual Chern Simons gauge theory.   Our main result is a bulk microstate interpretation of generalized entropy in terms of open strings and their edge modes, which we identify as entanglement branes.   

 

More precisely, we give a self consistent factorization of the closed string Hilbert space which introduces open string edge modes transforming under a q-deformed surface symmetry group. Compatibility with this symmetry requires a q-deformed definition of entanglement entropy. Using the topological vertex formalism, we define the Hartle Hawking state for the resolved conifold and compute its q-deformed entropy directly from the reduced density matrix.   We show that this is the same as the generalized entropy.   Finally, we relate non local aspects of our factorization map to analogous phenomenon recently found in JT gravity.

Thu, 17 Jun 2021

16:00 - 17:00

Identifiability in inverse stochastic optimal control

HAOYANG CAO
(Alan Turing Institute)
Abstract

Abstract: In this work, we analyze a class of stochastic inverse optimal control problems with entropy regularization. We first characterize the set of solutions for the inverse control problem. This solution set exemplifies the issue of degeneracy in generic inverse control problems that there exist multiple reward or cost functions that can explain the displayed optimal behavior. Then we establish one resolution for the degeneracy issue by providing one additional optimal policy under a different discount factor. This resolution does not depend on any prior knowledge of the solution set. Through a simple numerical experiment with deterministic transition kernel, we demonstrate the ability of accurately extracting the cost function through our proposed resolution.

 

Joint work with Sam Cohen (Oxford) and Lukasz Szpruch (Edinburgh).

Thu, 17 Jun 2021

14:00 - 15:00
Virtual

Primal-dual Newton methods, with application to viscous fluid dynamics

Georg Stadler
(New York University)
Abstract

I will discuss modified Newton methods for solving nonlinear systems of PDEs. These methods introduce additional variables before deriving the Newton linearization. These variables can then often be eliminated analytically before solving the Newton system, such that existing solvers can be adapted easily and the computational cost does not increase compared to a standard Newton method. The resulting algorithms yield favorable convergence properties. After illustrating the ideas on a simple example, I will show its application for the solution of incompressible Stokes flow problems with viscoplastic constitutive relation, where the additionally introduced variable is the stress tensor. These models are commonly used in earth science models. This is joint work with Johann Rudi (Argonne) and Melody Shih (NYU).

 

--

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 17 Jun 2021

14:00 - 15:00
Virtual

Wilson Loops, Cusps and Holography

Pietro Ferrero
(Mathematical Institute (University of Oxford))
Further Information

Contact organisers (Carmen Jorge-Diaz, Sujay Nair or Connor Behan) to obtain the link. 

Thu, 17 Jun 2021

13:00 - 14:00
Virtual

Modulation of synchronization in neural networks by a slowly varying ionic current

Sue Ann Campbell
(University of Waterloo)
Further Information

Synchronized activity of neurons is important for many aspects of brain function. Synchronization is affected by both network-level parameters, such as connectivity between neurons, and neuron-level parameters, such as firing rate. Many of these parameters are not static but may vary slowly in time. In this talk we focus on neuron-level parameters. Our work centres on the neurotransmitter acetylcholine, which has been shown to modulate the firing properties of several types of neurons through its affect on potassium currents such as the muscarine-sensitive M-current.  In the brain, levels of acetylcholine change with activity.  For example, acetylcholine is higher during waking and REM sleep and lower during slow wave sleep. We will show how the M-current affects the bifurcation structure of a generic conductance-based neural model and how this determines synchronization properties of the model.  We then use phase-model analysis to study the effect of a slowly varying M-current on synchronization.  This is joint work with Victoria Booth, Xueying Wang and Isam Al-Darbasah.

Abstract

Synchronized activity of neurons is important for many aspects of brain function. Synchronization is affected by both network-level parameters, such as connectivity between neurons, and neuron-level parameters, such as firing rate. Many of these parameters are not static but may vary slowly in time. In this talk we focus on neuron-level parameters. Our work centres on the neurotransmitter acetylcholine, which has been shown to modulate the firing properties of several types of neurons through its affect on potassium currents such as the muscarine-sensitive M-current.  In the brain, levels of acetylcholine change with activity.  For example, acetylcholine is higher during waking and REM sleep and lower during slow wave sleep. We will show how the M-current affects the bifurcation structure of a generic conductance-based neural model and how this determines synchronization properties of the model.  We then use phase-model analysis to study the effect of a slowly varying M-current on synchronization.  This is joint work with Victoria Booth, Xueying Wang and Isam Al-Darbasah

Thu, 17 Jun 2021

12:00 - 13:00
Virtual

Willmore Surfaces: Min-Max and Morse Index

Alexis Michelat
(University of Oxford)
Further Information

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact Benjamin Fehrman.

Abstract

The integral of mean curvature squared is a conformal invariant that measures the distance from a given immersion to the standard embedding of a round sphere. Following work of Robert Bryant who showed that all Willmore spheres in the 3-sphere are conformally minimal, Robert Kusner proposed in the early 1980s to use the Willmore energy to obtain an “optimal” sphere eversion, called the min-max sphere eversion.

We will present a method due to Tristan Rivière that permits to tackle a wide variety of min-max problems, including ones about the Willmore energy. An important step to solve Kusner’s conjecture is to determine the Morse index of branched Willmore spheres, and we show that the Morse index of conformally minimal branched Willmore spheres is equal to the index of a canonically associated matrix whose dimension is equal to the number of ends of the dual minimal surface.

Thu, 17 Jun 2021
11:30
Virtual

Compressible types in NIP theories

Itay Kaplan
(The Hebrew University of Jerusalem)
Abstract

I will discuss compressible types and relate them to uniform definability of types over finite sets (UDTFS), to uniformity of honest definitions and to the construction of compressible models in the context of (local) NIP. All notions will be defined during the talk.
Joint with Martin Bays and Pierre Simon.