Thu, 05 Dec 2024

12:00 - 13:00
L3

Chaotic flows in polymer solutions: what’s new?

Prof. Rich Kerswell
(University of Cambridge)
Further Information

Rich Kerswell is a professor in the Department of Applied Mathematics and Theoretical Physics (DAMTP) at the University of Cambridge. His research focuses on fluid dynamics, particularly in the transition to turbulence, geophysical fluid flows, and nonlinear dynamics. Kerswell is known for studying how simple fluid systems can exhibit complex, chaotic behavior and has contributed to understanding turbulence's onset and sustainment in various contexts, including pipes and planetary atmospheres. His work integrates mathematical modeling, theoretical analysis, and computational simulations to explore instabilities and the fundamental mechanisms governing fluid behavior in nature and industry.

Abstract

It is well known that adding even small amounts of  long chain polymers (e.g. few parts per million) to Newtonian solvents can drastically change the flow behaviour by introducing elasticity. In particular,  two decades ago, experiments in curved geometries  demonstrated  that polymer flows can be  chaotic even at vanishingly small Reynolds numbers. The situation in `straight’ flows  such as pressure-driven flow down a channel is less clear  and hence an area of current focus. I will discuss recent progress.

Thu, 05 Dec 2024

11:00 - 12:00
C1

Local-Global Principles and Fields Elementarily Characterised by Their Absolute Galois Groups

Benedikt Stock
(University of Oxford)
Abstract

Jochen Koenigsmann’s Habilitation introduced a classification of fields elementarily characterised by their absolute Galois groups, including two conjecturally empty families. The emptiness of one of these families would follow from a Galois cohomological conjecture concerning radically closed fields formulated by Koenigsmann. A promising approach to resolving this conjecture involves the use of local-global principles in Galois cohomology. This talk examines the conceptual foundations of this method, highlights its relevance to Koenigsmann’s classification, and evaluates existing local-global principles with regard to their applicability to this conjecture.

Wed, 04 Dec 2024
16:00
L6

Tambara-Yamagami Fusion Categories

Adrià Marín-Salvador
(University of Oxford)
Abstract

In this talk, I will introduce fusion categories as categorical versions of finite rings. We will discuss some examples which may already be familiar, like the category of representations of a finite group and the category of vector spaces graded over a finite group. Then, we will define Tambara-Yamagami categories, which are a certain type of fusion categories which have one simple object which is non-invertible. I will provide the classification results of Tambara and Yamagami on these categories and give some small examples. Time permitting, I will discuss current work in progress on how to generalize Tambara-Yamagami fusion categories to locally compact groups. 

This talk will not assume familiarity with category theory further than the definition of a category and a functor.

Wed, 04 Dec 2024
11:00
L4

Effective Mass of the Polaron and the Landau-Pekar-Spohn Conjecture

Chiranjib Mukherjee
(University of Münster)
Abstract

According to a conjecture by Landau-Pekar (1948) and by Spohn (1986), the effective mass of the Fröhlich Polaron should diverge in the strong coupling limit like a quartic power of the coupling constant. In a recent joint with R. Bazaes, M. Sellke and S.R.S. Varadhan, we prove this conjecture.

Tue, 03 Dec 2024
16:00
C3

The space of traces of certain discrete groups

Raz Slutsky
(University of Oxford)
Abstract

A trace on a group is a positive-definite conjugation-invariant function on it. These traces correspond to tracial states on the group's maximal  C*-algebra. In the past couple of decades, the study of traces has led to exciting connections to the rigidity, stability, and dynamics of groups. In this talk, I will explain these connections and focus on the topological structure of the space of traces of some groups. We will see the different behaviours of these spaces for free groups vs. higher-rank lattices, and how our strategy for the free group can be used to answer a question of Musat and Rørdam regarding free products of matrix algebras. This is based on joint works with Arie Levit, Joav Orovitz, and Itamar Vigdorovich.

Tue, 03 Dec 2024
16:00
L6

Large deviations of Selberg’s CLT: upper and lower bounds

Emma Bailey
(University of Bristol)
Abstract

Selberg’s CLT informs us that the logarithm of the Riemann zeta function evaluated on the critical line behaves as a complex Gaussian. It is natural, therefore, to study how far this Gaussianity persists. This talk will present conditional and unconditional results on atypically large values, and concerns work joint with Louis-Pierre Arguin and Asher Roberts.

Tue, 03 Dec 2024
15:00
L6

Short loxodromics in graph products

Alice Kerr
(University of Bristol)
Abstract
Let G be a finitely generated group, with finite generating set S. Suppose G contains elements with some property that we’re interested in.  Can we find elements with this property uniformly quickly in G? That is, does S^n contain an element with this property for a bounded n?
 
We will discuss this question for graph products, where the elements we are looking for are ones with nice hyperbolic properties, such as loxodromic and Morse elements. We will also talk about consequences for the growth of these groups. This is joint work with Elia Fioravanti.

 
Tue, 03 Dec 2024
14:00
L5

Gecia Bravo-Hermsdorff: What is the variance (and skew, kurtosis, etc) of a network? Graph cumulants for network analysis

Gecia Bravo-Hermsdorff
(University College London)
Abstract

Topically, my goal is to provide a fun and instructive introduction to graph cumulants: a hierarchical set of subgraph statistics that extend the classical cumulants (mean, (co)variance, skew, kurtosis, etc) to relational data.  

Intuitively, graph cumulants quantify the propensity (if positive) or aversion (if negative) for the appearance of any particular subgraph in a larger network.  

Concretely, they are derived from the “bare” subgraph densities via a Möbius inversion over the poset of edge partitions.  

Practically, they offer a systematic way to measure similarity between graph distributions, with a notable increase in statistical power compared to subgraph densities.  

Algebraically, they share the defining properties of cumulants, providing clever shortcuts for certain computations.  

Generally, their definition extends naturally to networks with additional features, such as edge weights, directed edges, and node attributes.  

Finally, I will discuss how this entire procedure of “cumulantification” suggests a promising framework for a motif-centric statistical analysis of general structured data, including temporal and higher-order networks, leaving ample room for exploration. 

Tue, 03 Dec 2024
14:00
L6

Hyperbolic intersection arrangements

Samuel Lewis
((University of Oxford))
Abstract

Consider a connected graph and choose a subset of its vertices. From this simple setup, Iyama and Wemyss define a collection of real hyperplanes known as an intersection arrangement, going on to classify all tilings of the affine plane that arise in this way. These "local" generalisations of Coxeter combinatorics also admit a nice wall-crossing structure via Dynkin involutions and longest Weyl elements. In this talk I give an analogous classification in the hyperbolic setting using the data of an "overextended" ADE diagram with three distinguished vertices. I then discuss ongoing work applying intersection arrangements to parametrise notions of stability conditions for preprojective algebras.

Tue, 03 Dec 2024

14:00 - 15:00
L4

A Zarankiewicz problem in tripartite graphs

Freddie Illingworth
(University College London)
Abstract

In 1975, Bollobás, Erdős, and Szemerédi asked the following Zarankiewicz-type problem. What is the smallest τ such that an n×n×n tripartite graph with minimum degree n+τ must contain Kt,t,t? They further conjectured that τ=O(n1/2) when t=2.

I will discuss our proof that τ=O(n11/t) (confirming their conjecture) and an infinite family of extremal examples. The bound O(n11/t) is best possible whenever the Kővári-Sós-Turán bound ex(n,Kt,t)=O(n21/t) is (which is widely-conjectured to be the case).

This is joint work with Francesco Di Braccio (LSE).

Tue, 03 Dec 2024
13:00
L2

Quantized axial charge of lattice fermions and the chiral anomaly

Arkya Chatterje
(MIT )
Abstract

Realizing chiral global symmetries on a finite lattice is a long-standing challenge in lattice gauge theory, with potential implications for non-perturbative regularization of the Standard Model. One of the simplest examples of such a symmetry is the axial U(1) symmetry of the 1+1d massless Dirac fermion field theory: it acts by equal and opposite phase rotations on the left- and right-moving Weyl components of the Dirac field. This field theory also has a vector U(1) symmetry which acts identically on left- and right-movers. The two U(1) symmetries exhibit a mixed anomaly, known as the chiral anomaly. In this talk, we will discuss how both symmetries are realized as ordinary U(1) symmetries of an "ultra-local" lattice Hamiltonian, on a finite-dimensional Hilbert space. Intriguingly, the anomaly of the Abelian U(1) symmetries in the infrared (IR) field theory is matched on the lattice by a non-Abelian Lie algebra. The lattice symmetry forces the low-energy phase to be gapless, closely paralleling the effects of the anomaly in the field theory.

Mon, 02 Dec 2024
16:30
L4

Introducing various notions of distances between space-times

Anna Sakovich
(University of Uppsala)
Abstract

I will introduce the class of causally-null-compactifiable spacetimes that can be canonically converted into compact timed-metric spaces using the cosmological time function of Andersson-Galloway-Howard and the null distance of Sormani-Vega. This class of space-times includes future developments of compact initial data sets and regions exhausting asymptotically flat space-times. I will discuss various intrinsic notions of distance between such space-times and show that some of them are definite in the sense that they are equal to zero if and only if there is a time-oriented Lorentzian isometry between the space-times. These definite distances allow us to define notions of convergence of space-times to limit space-times that are not necessarily smoothThis is joint work with Christina Sormani.

Mon, 02 Dec 2024
16:00
C3

TBC

Leo Gitin
(University of Oxford)
Abstract

TBC

Mon, 02 Dec 2024
15:30
L5

Building surfaces from equilateral triangles

Lasse Rempe
(Manchester University)
Abstract
In this talk, we consider the following question. Suppose that we glue a (finite or infinite) collection of closed equilateral triangles together in such a way that we obtain an orientable surface. The resulting surface is a Riemann surface; that is, it has a natural conformal structure (a way of measuring angles in tangent space). We ask which Riemann surfaces are *equilaterally triangulable*; i.e., can arise in this fashion.

The answer in the compact case is given by a famous classical theorem of Belyi, which states that a compact surface is equilaterally triangulable if and only if it is defined over a number field. These *Belyi surfaces* - and their associated “dessins d’enfants” - have found applications across many fields of mathematics, including mathematical physics.

In joint work with Chris Bishop, we give a complete answer of the same question for the case of infinitely many triangles (i.e., for non-compact Riemann surfaces). The talk should be accessible to a general mathematical audience, including postgraduate students.


 

Mon, 02 Dec 2024
15:30
L3

Chasing regularization by noise of 3D Navier-Stokes equations

Dr Antonio Agresti
(Delft University of Technology )
Abstract

Global well-posedness of 3D Navier-Stokes equations (NSEs) is one of the biggest open problems in modern mathematics. A long-standing conjecture in stochastic fluid dynamics suggests that physically motivated noise can prevent (potential) blow-up of solutions of the 3D NSEs. This phenomenon is often referred to as `regularization by noise'. In this talk, I will review recent developments on the topic and discuss the solution to this problem in the case of the 3D NSEs with small hyperviscosity, for which the global well-posedness in the deterministic setting remains as open as for the 3D NSEs. An extension of our techniques to the case without hyperviscosity poses new challenges at the intersection of harmonic and stochastic analysis, which, if time permits, will be discussed at the end of the talk.

Mon, 02 Dec 2024
14:15
L4

Open Gromov-Witten invariants and Mirror symmetry

Kai Hugtenburg
(Lancaster)
Abstract

This talk reports on two projects. The first work (in progress), joint  with Amanda Hirschi, constructs (genus 0) open Gromov-Witten invariants for any Lagrangian submanifold using a global Kuranishi chart construction. As an application we show open Gromov-Witten invariants are invariant under Lagrangian cobordisms. I will then describe how open Gromov-Witten invariants fit into mirror symmetry, which brings me to the second project: obtaining open Gromov-Witten invariants from the Fukaya category.

Mon, 02 Dec 2024

14:00 - 15:00
Lecture Room 3

Enhancing Accuracy in Deep Learning using Marchenko-Pastur Distribution

Leonid Beryland
(Penn State University)
Abstract

We begin with a short overview of Random Matrix Theory (RMT), focusing on the Marchenko-Pastur (MP) spectral approach. 

Next, we present recent analytical and numerical results on accelerating the training of Deep Neural Networks (DNNs) via MP-based pruning ([1]). Furthermore, we show that combining this pruning with L2 regularization allows one to drastically decrease randomness in the weight layers and, hence, simplify the loss landscape. Moreover, we show that the DNN’s weights become deterministic at any local minima of the loss function. 
 

Finally, we discuss our most recent results (in progress) on the generalization of the MP law to the input-output Jacobian matrix of the DNN. Here, our focus is on the existence of fixed points. The numerical examples are done for several types of DNNs: fully connected, CNNs and ViTs. These works are done jointly with PSU PhD students M. Kiyashko, Y. Shmalo, L. Zelong and with E. Afanasiev and V. Slavin (Kharkiv, Ukraine). 

 

[1] Berlyand, Leonid, et al. "Enhancing accuracy in deep learning using random matrix theory." Journal of Machine Learning. (2024).

Mon, 02 Dec 2024
13:30
C4

Extended TQFT, gauge theory, and Measurement Based Quantum Computation

Gabriel Wong
Abstract

Measurement-Based Quantum Computation (MBQC) is a model of quantum computation driven by measurements instead of unitary gates.   In 2D it is capable of supporting universal quantum computations.   Interestingly, while all measurements are local, the computational output involves non local observables.   We will use the simpler case of 1D MBQC to illustrate how these features can be captured by ideas from gauge theory and extended TQFT. We will also explain  MBQC from the perspective of the extended Hilbert space construction in gauge theories, in which the entanglement edge modes play the role of the logical qubit.

Fri, 29 Nov 2024

14:00 - 15:00
L1

Combating Imposter Syndrome

Abstract

How can it be that so many clever, competent and capable people can feel that they are just one step away from being exposed as a complete fraud? Despite evidence that they are performing well they can still have that lurking fear that at any moment someone is going to tap them on the shoulder and say "We need to have a chat". If you've ever felt like this, or you feel like this right now, then this Friday@2 session might be of interest to you. We'll explore what "Imposter Feelings" are, why we get them and steps you can start to take to help yourself and others. This event is likely to be of interest to undergraduates and MSc students at all stages. 

Fri, 29 Nov 2024
12:00
L2

Towards a mathematical definition of superstring scattering amplitudes

Alexander Polishchuk
(University of Oregon)
Abstract

This is a report on the ongoing joint project with Giovanni Felder and David Kazhdan. I'll describe a conjectural way to set up the integration of the superstring measure on the moduli space of supercurves, including a brief review of the necessary supergeometry. The main theorem is that this setup works for genus 2 with no punctures.

Fri, 29 Nov 2024

12:00 - 13:00
C5

On Lusztig’s local Langlands correspondence and functoriality

Emile Okada
(National University of Singapore)
Abstract

In ’95 Lusztig gave a local Langlands correspondence for unramified representations of inner to split adjoint groups combining many deep results from type theory and geometric representation theory. In this talk I will present a gentle reformulation of his construction revealing some interesting new structures, and with a view toward proving functoriality results in this framework. 

Fri, 29 Nov 2024

12:00 - 13:00
C5

On Lusztig’s local Langlands correspondence and functoriality

Emile Okada
(National University of Singapore)
Abstract

In ’95 Lusztig gave a local Langlands correspondence for unramified representations of inner to split adjoint groups combining many deep results from type theory and geometric representation theory. In this talk, I will present a gentle reformulation of his construction revealing some interesting new structures, and with a view toward proving functoriality results in this framework. 

This seminar is organised jointly with the Junior Algebra and Representation Theory Seminar - all are very welcome!

Fri, 29 Nov 2024

11:00 - 12:00
L5

Algebraic approaches in the study of chemical reaction networks

Dr Murad Banaji
(Mathematical Institute University of Oxford)
Abstract

Underlying many biological models are chemical reaction networks (CRNs), and identifying allowed and forbidden dynamics in reaction networks may 
give insight into biological mechanisms. Algebraic approaches have been important in several recent developments. For example, computational 
algebra has helped us characterise all small mass action CRNs admitting certain bifurcations; allowed us to find interesting and surprising 
examples and counterexamples; and suggested a number of conjectures.   Progress generally involves an interaction between analysis and 
computation: on the one hand, theorems which recast apparently difficult questions about dynamics as (relatively tractable) algebraic problems; 
and on the other, computations which provide insight into deeper theoretical questions. I'll present some results, examples, and open 
questions, focussing on two domains of CRN theory: the study of local bifurcations, and the study of multistationarity.

Thu, 28 Nov 2024
17:00
L4

The Index of Constant Mean Curvature Surfaces in Three-Manifolds

Luca Seemungal
(University of Leeds)
Abstract
Constant mean curvature (CMC) surfaces are special geometric variational objects, closely related to minimal surfaces. The key properties of a CMC surface are its area, mean curvature, genus, and index. The index of a CMC surface measures its stability: the index counts how many ways one can perturb the surface to decrease the area while keeping the enclosed volume constant. In this talk we discuss relationships between these key properties. In particular we present recent joint work with Ben Sharp, where we bound the index of CMC surfaces linearly from above by genus and the correct scale-invariant quantity involving mean curvature and area.

 
Thu, 28 Nov 2024
16:00
C3

On the (Local) Lifting Property

Tatiana Shulman
(University of Gothenburg)
Abstract

The (Local) Lifting Property ((L)LP) is introduced by Kirchberg and deals with lifting completely positive maps. We will discuss various examples, characterizations, and closure properties of the (L)LP and, if time permits, connections with some other lifting properties of C*-algebras.  Joint work with Dominic Enders.