Thu, 02 Aug 2018
12:00
C6

A mathematical theory for the construction of the turbulent two point correlation functions

James Glimm
(Stony Brook University)
Abstract

We solve the construction of the turbulent two point functions in the following manner:

A mathematical theory, based on a few physical laws and principles, determines the construction of the turbulent two point function as the expectation value of a statistically defined random field. The random field is realized via an infinite induction, each step of which is given in closed form.

Some version of such models have been known to physicists for some 25 years. Our improvements are two fold:

  1. Some details in the reasoning appear to be missing and are added here.
  2. The mathematical nature of the algorithm, difficult to discern within the physics presentation, is more clearly isolated.

Because the construction is complex, usable approximations, known as surrogate models, have also been developed.

The importance of these results lies in the use of the two point function to improve on the subgrid models of Lecture I.

We also explain limitations. For the latter, we look at the deflagration to detonation transition within a type Ia supernova and decide that a completely different methodology is recommended. We propose to embed multifractal ideas within a physics simulation package, rather than attempting to embed the complex formalism of turbulent deflagration into the single fluid incompressible model of the two point function. Thus the physics based simulation model becomes its own surrogate turbulence model.

Thu, 02 Aug 2018

11:00 - 12:00
C6

Turbulence models and convergence rates

James Glimm
(Stony Brook University)
Abstract

We discuss three methods for the simulation of turbulent fluids. The issue we address is not the important issue of numerical algorithms, but the even more basic question of the equations to be solved, otherwise known as the turbulence model.  These equations are not simply the Navier-Stokes equations, but have extra, turbulence related terms, related to turbulent viscosity, turbulent diffusion and turbulent thermal conductivity. The extra terms are not “standard textbook” physics, but are hypothesized based on physical reasoning. Here we are concerned with these extra terms.

The many models, divided into broad classes, differ greatly in

Dependence on data
Complexity
Purpose and usage

For this reason, each of the classes of models has its own rationale and domain of usage.

We survey the landscape of turbulence models.

Given a turbulence model, we ask: what is the nature of convergence that a numerical algorithm should strive for? The answer to this question lies in an existence theory for the Euler equation based on the Kolmogorov 1941 turbulent scaling law, taken as a hypothesis (joint work with G-Q Chen).

Wed, 01 Aug 2018

12:00 - 13:00
C6

Bressan’s Conjecture on compactness of flow for BV vector fields

Stefano Bianchini
(SISSA-ISAS)
Abstract

When studying a systems of conservation laws in several space dimensions, A. Bressan conjectured that the flows $X^n(t)$ generated by a smooth vector fields $\mathbf b^n(t,x)$,
\[
\frac{d}{dt} X^n(t,y) = \mathbf b^n(t,X(t,y)),
\]
are compact in $L^1(I\!\!R^d)$ for all $t \in [0,T]$ if $\mathbf b^n \in L^\infty \cap \mathrm{BV}((0,t) \times I\!\!R^d)$ and they are nearly incompressible, i.e.
\[
\frac{1}{C} \leq \det(\nabla_y X(t,y)) \leq C
\]
for some constant $C$. This conjecture is implied by the uniqueness of the solution to the linear transport equation
\[
\partial_t \rho + \mathrm{div}_x(\rho \mathbf b) = 0, \quad \rho \in L^\infty((0,T) \times I\!\!R^d),
\]
and it is the natural extension of a series of results concerning vector fields $\mathbf b(t,x)$ with Sobolev regularity.

We will give a general framework to approach the uniqueness problem for the linear transport equation and to prove Bressan's conjecture.

Fri, 27 Jul 2018

16:30 - 17:15
L6

How did Chinese deal with a scientific problem: Building the solar eclipse theory in ancient China (the 7th-10th century AD)

Anjing Qu
(Xi'an)
Abstract

In the 6th century, the phenomena of irregularity of the solar motion and parallax of the moon were found by Chinese astronomers. This made the calculation of solar eclipse much more complex than before. The strategy that Chinese calendar-makers dealt with was different from the geometrical model system like Greek astronomers taken as. What Chinese astronomers chose is a numerical algorithm system which was widely taken as a thinking mode to construct the theory of mathematical astronomy in old China. 

Fri, 27 Jul 2018

16:00 - 16:30
L6

William Burnside and the Mystery Letter

Howard Emmens
Abstract

Relatively little is known about the correspondence of William Burnside, a pioneer of group theory in the UK. There are only a few dozen extant letters from or to him, though they are not without interest. However, one of the most noteworthy letters to or at least about him, in that it had a special mention in his obituary in the Proceedings of the Royal Society, has not been positively identified. It's not clear who it was from or when it was sent. We'll look at some possibilities.

Fri, 27 Jul 2018

15:00 - 15:30
L6

Meeting under the integral sign? The 1936 Oslo International Congress of Mathematicians

Christopher Hollings
(Oxford)
Abstract

The International Congresses of Mathematicians (ICMs) have taken place at (reasonably) regular intervals since 1897, and although their participants may have wanted to confine these events purely to mathematics, they could not help but be affected by wider world events.  This is particularly true of the 1936 ICM, held in Oslo.  In this talk, I will give a whistle-stop tour of the early ICMs, before discussing the circumstances of the Oslo meeting, with a particular focus on the activities of the Nazi-led German delegation.

Fri, 27 Jul 2018

14:30 - 15:00
L6

About the nature of π: Proofs and conjectures in Lambert's Mémoire (1768)

Eduardo Dorrego López
(Seville)
Abstract

The emergence of analytic methods in the 17th century opened a new way in order to tackle the elucidation of certain quantities. The strong presence of the circle-squaring problem, focused mainly the attention on π, on which besides the serious doubts about its rationality, it arises an awareness---boosted by the new algebraic approach---of the difficulty of framing it inside algebraic boundaries. The term ``transcendence'' emerges in this context but with a very ambiguous meaning.

The first great step towards its comprehension, took place in the 18th century and came from Johann Heinrich Lambert's hand, who using a new analytical machinery---continued fractions---gave the first proof of irrationality of π. The problem of keeping this number inside the algebraic limits, also receives an especial attention at the end of his Mémoires sur quelques propriétés remarquables des quantités transcendantes, circulaires et logarithmiques, published by the Berlin Academy of Science in 1768. In this work, Lambert after giving to the term ``transcendence'' its modern meaning, conjectures the transcendence of π and therefore the impossibility of squaring the circle.

Mon, 23 Jul 2018

14:00 - 16:00
L6

Shock Refection Problem: Existence and Uniqueness of Solutions

Mikhail Feldman
(University of Wisconsin)
Abstract

We discuss shock reflection problem for compressible gas dynamics, von Neumann conjectures on transition between regular and Mach reflections. Then we describe recent results on existence and uniqueness of regular reflection solutions for potential flow equation, and discuss some techniques involved in the proof. The approach is to reduce the shock reflection problem to a free boundary problem, and prove existence and uniqueness by a version of method of continuity. This involves apriori estimates of solutions in the elliptic region of the equation of mixed type, with ellipticity degenerating on some part of the boundary. For the proof of uniqueness, an important property of solutions is convexity of the free boundary. We will also discuss some open problems.

This talk is based on joint works with G.-Q. Chen and W. Xiang.

 

Fri, 13 Jul 2018

14:00 - 15:00
C4

The role of waves on turbulent dissipation and mixing in geophysical flows

Annick Pouquet
(University of Colorado Boulder / NCAR)
Abstract

In the Boussinesq framework, velocity couples to density fluctuations whereas in magnetohydrodynamic turbulence, the velocity field is coupled to the magnetic field. Both systems support waves (inertia-gravity in the presence of rotation, or Alfvén), with anisotropic dispersion relations. What kind of turbulence regimes result from the interactions between waves and nonlinear eddies in such flows? And what is delimiting these regimes?

I shall sketch the phenomenological framework for rotating stratified turbulence within which one is led to scaling laws in terms of the Froude number, Fr=U/[LN], which measures the relative celerity of gravity waves and nonlinear eddies, with U and L characteristic velocity and length scale, and N the Brunt-V\"ais\"al\"a frequency. These laws apply to the mixing efficiency of such flows, indicating the relative roles of the buoyancy flux due to the waves, and of the measured kinetic and potential energy dissipation rates. Various measures of mixing are found to follow power laws in terms of the Froude number, and may differ for the three regimes that can be identified, namely the wave-dominated, wave-eddy balance and eddy-dominated domains [1]. In particular, in the intermediate regime, the effective dissipation varies linearly with Fr, in agreement with simple wave-turbulence arguments. This analysis is inspired by and corroborates results from a large parametric study using direct numerical simulations (DNS) on grids of 1024^3 points, as well as from atmospheric and oceanic observations.

Such scaling laws can be related to previous DNS results concerning the existence for the energy of bi-directional constant-flux cascades to both the small scales and to the large scales, due to the presence of rotation in such flows, as measured for example in the ocean. These dual energy cascades lead to an alteration, and a decrease, of the mixing and available energy to be dissipated in the small scales [2]. Some perspectives might also be given at the end of the talk.

 

[1] A. Pouquet, D. Rosenberg, R. Marino & C. Herbert, Scaling laws for mixing and dissipation in unforced rotating stratified turbulence. J. Fluid Mechanics 844, 519, 2018.
[2] R. Marino, A. Pouquet & D. Rosenberg, Resolving the paradox of oceanic large-scale balance and small-scale mixing. Physical Review Letters 114, 114504, 2015.

Fri, 06 Jul 2018

11:45 - 13:15
L3

InFoMM CDT Group Meeting

Rachel Philip, Victoria Pereira, Ana Osojnik, Scott Marquis
(Mathematical Institute)
Wed, 04 Jul 2018

14:30 - 15:30
L3

A^1 contractible varieties

Paul Arne Østvær
(Oslo)
Abstract

Motivic homotopy theory gives a way of viewing algebraic varieties and topological spaces as objects in the same category, where homotopies are parametrised  by the affine line.  In particular, there is a notion of $\mathbb A^1$ contractible varieties.  Affine spaces are $\mathbb A^1$ contractible by definition.  The Koras-Russell threefold KR defined by the equation $x + x^2y + z^2 + t^3 = 0$ in $\mathbb A^4$ is the first nontrivial example of an $\mathbb A^1$ contractible smooth affine variety.  We will discuss this example in some detail, and speculate on whether one can use motivic homotopy theory to distinguish between KR and $\mathbb A^3$.

Mon, 02 Jul 2018

16:00 - 17:00
L4

Lauren Williams - Combinatorics of the tree amplituhedron

Lauren Williams
((UC Berkeley))
Abstract

The tree amplituhedron A(n, k, m) is a geometric object generalizing the positive Grassmannian, which was introduced by Arkani-Hamed and Trnka in 2013 in order to give a geometric basis for the computation of scattering amplitudes in N=4 supersymmetric Yang-Mills theory. I will give a gentle introduction to the amplituhedron, and then describe what it looks like in various special cases. For example, one can use the theory of sign variation and matroids to show that the amplituhedron A(n, k, 1) can be identified with the complex of bounded faces of a cyclic hyperplane arrangement. I will also present some conjectures relating the amplituhedron A(n, k, m) to combinatorial objects such as non-intersecting lattice paths and plane partitions. This is joint work with Steven Karp, and part of it is additionally joint work with Yan Zhang.

Mon, 02 Jul 2018
12:45
L1

Supersymmetric partition functions on Seifert manifolds from line defects

Cyril Closset
(Cern)
Abstract

As we have learned over the last 10 years, many exact results for various observables in three-dimensional N=2 supersymmetric theories can be extracted from the computation of "supersymmetric partition functions" on curved three-manifold M_3, for instance on M_3= S^3 the three-sphere. Typically, such computations must be carried anew for each M_3 one might want to consider, and the technical difficulties mounts as the topology of M_3 gets more involved. In this talk, I will explain a different approach that allows us to compute the partition function on "almost" any half-BPS geometry. The basic idea is to relate different topologies by the insertion of certain half-BPS line defects, the "geometry-changing line operators." I will also explain how our formalism can be related to the Beem-Dimofte-Pasquetti holomorphic blocks. [Talk based on a paper to appear in a week, with Heeyeon Kim and Brian Willett.]
 

Thu, 28 Jun 2018

17:00 - 18:00
L1

Fernando Vega-Redondo - Contagious disruptions and complexity traps in economic development

Fernando Vega-Redondo
(Bocconi University)
Abstract

Poor economies not only produce less; they typically produce things that involve fewer inputs and fewer intermediate steps. Yet the supply chains of poor countries face more frequent disruptions - delivery failures, faulty parts, delays, power outages, theft, government failures - that systematically thwart the production process.

To understand how these disruptions affect economic development, we model an evolving input-output network in which disruptions spread contagiously among optimizing agents. The key finding is that a poverty trap can emerge: agents adapt to frequent disruptions by producing simpler, less valuable goods, yet disruptions persist. Growing out of poverty requires that agents invest in buffers to disruptions. These buffers rise and then fall as the economy produces more complex goods, a prediction consistent with global patterns of input inventories. Large jumps in economic complexity can backfire. This result suggests why "big push" policies can fail, and it underscores the importance of reliability and of gradual increases in technological complexity.

Tue, 26 Jun 2018

18:00 - 19:00
L1

Richard James - Atomistically inspired origami

Richard James
(University of Minnesota)
Abstract

The World population is growing at about 80 million per year.  As time goes by, there is necessarily less space per person. Perhaps this is why the scientific community seems to be obsessed with folding things.  In this lecture Dick James presents a mathematical approach to “rigid folding” inspired by the way atomistic structures form naturally - their features at a molecular level imply desirable features for macroscopic structures as well, especially 4D structures.  Origami structures even suggest an unusual way to look at the Periodic Table.

Richard D. James is Distinguished McKnight University Professor at the University of Minnesota.

Please email @email to register.

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Tue, 26 Jun 2018

12:00 - 13:30
L4

Even a tiny cosmological constant casts a long shadow

Prof Abhay Ashtekar
(Penn State)
Abstract

Over 50 years ago, Bondi, Sachs, Newman, Penrose and others laid down foundations for the theory of gravitational waves in full non-linear general relativity. In particular, numerical simulations of binary mergers used in the recent discovery of gravitational waves are based on this theory. However, over the last 2-3 decades, observations have also revealed that the universe is accelerating in a manner consistent with the presence of a positive cosmological constant $\Lambda$. Surprisingly, it turns out that even the basic notions of the prevailing theory of gravitational waves --the Bondi news, the radiation field, the Bondi-Sachs 4-momentum-- do not easily generalize to this context, {\it no matter how small $\Lambda$ is.} Even in the weak field limit, it took a hundred years to find an appropriate generalization of Einstein's celebrated quadrupole formula to accommodate a positive cosmological constant. I will summarize the main issues and then sketch the current state of the art.
 

Thu, 21 Jun 2018
11:00
L3

Recent advances in nonlinear potential theory

Giuseppe Mingione
(Università di Parma)
Abstract

I am going to report on some developments in regularity theory of nonlinear, degenerate equations, with special emphasis on estimates involving linear and nonlinear potentials. I will cover three main cases: degenerate nonlinear equations, systems, non-uniformly elliptic operators. 

Wed, 20 Jun 2018

12:00 - 13:00
L5

A new variational principle with applications in partial differential equations and Analysis

Abbas Momeni
(Carleton University)
Abstract

In this talk, we shall provide a comprehensive variational principle that allows one to apply critical point theory on closed proper subsets of a given Banach space and yet, to obtain critical points with respect to the whole space.
This variational principle has many applications in partial differential equations while unifies and generalizes several results in nonlinear Analysis such as the fixed point theory, critical point theory on convex sets and the principle of symmetric criticality.

Mon, 18 Jun 2018
15:45
L3

Semi-stability in Nonpositive curvature

Eric Swenson
(Brigham Young University)
Abstract

A proper simply connected one-ended metric space is call semi-stable if any two proper rays are properly homotopic.  A finitely presented group is called semi-stable if the universal cover of its presentation 2-complex is semi-stable.  
It is conjectured that every finitely presented group is semi-stable.  We will examine the known results for the cases where the group in question is relatively hyperbolic or CAT(0). 
 

Fri, 15 Jun 2018

16:00 - 17:00
L2

Alfio Quarteroni - Mathematical and numerical models for heart function

Alfio Quarteroni
(EPFL Lausanne and Politecnico di Milano)
Abstract

Mathematical models based on first principles can describe the interaction between electrical, mechanical and fluid-dynamical processes occurring in the heart. This is a classical multi-physics problem. Appropriate numerical strategies need to be devised to allow for an effective description of the fluid in large and medium size arteries, the analysis of physiological and pathological conditions, and the simulation, control and shape optimisation of assisted devices or surgical prostheses. This presentation will address some of these issues and a few representative applications of clinical interest.

Fri, 15 Jun 2018

15:00 - 16:00
L6

"A counterexample to the first Zassenhaus conjecture".

Florian Eisele
(City University London)
Abstract

There are many interesting problems surrounding the unit group U(RG) of the ring RG, where R is a commutative ring and G is a finite group. Of particular interest are the finite subgroups of U(RG). In the seventies, Zassenhaus conjectured that any u in U(ZG) is conjugate, in the group U(QG), to an element of the form +/-g, where g is an element of the group G. This came to be known as the "(first) Zassenhaus conjecture". I will talk about the recent construction of a counterexample to this conjecture (this is joint work with L. Margolis), and recent work on related questions in the modular representation theory of finite groups.