Tue, 22 May 2018

12:30 - 13:30
C3

Cascade-Recovery Dynamics on Complex Networks

Nanxin Wei
(Department of Mathematics, Imperial College London)
Abstract


Cascading phenomena are prevalent in natural and social-technical complex networks. We study the persistent cascade-recovery dynamics on random networks which are robust against small trigger but may collapse for larger one. It is observed that depending on the relative intensity of triggering and recovery, the network belongs one of the two dynamical phases: collapsing or active phase. We devise an analytical framework which characterizes not only the critical behaviour but also the temporal evolution of network activity in both phases. Results from agent-based simulations show good agreement with theoretical calculations. This work is an important attempt in understanding networked systems gradually evolving into a state of critical transition, with many potential applications.
 

Tue, 22 May 2018

12:00 - 13:15
L4

Towards an M5-brane model: A 6d superconformal field theory

Christian Saemann
(Heriot Watt University)
Abstract

I will discuss a classical six-dimensional superconformal field theory containing a non-abelian tensor multiplet which we recently constructed in arXiv:1712.06623.

This theory satisfies many of the properties of the mysterious (2,0)-theory: non-abelian 2-form potentials, ADE-type gauge structure, reduction to Yang-Mills theory and reduction to M2-brane models. There are still some crucial differences to the (2,0)-theory, but our action seems to be a key stepping stone towards a potential classical formulation of the (2,0)-theory.

I will review in detail the underlying mathematics of categorified gauge algebras and categorified connections, which make our constructions possible.

 

Mon, 21 May 2018

16:00 - 17:00
L4

Recent advances in analysis of critical points of Landau-de Gennes energy in 2D and 3D

Georgy Kitavtsev
(Oxford)
Abstract

In the first part of this talk the two-dimensional Landau-de Gennes energy with several elastic constants, subject to general k-radial symmetric boundary conditions, will be analysed. It will be shown that for generic elastic constants the critical points consistent with the symmetry of the boundary conditions exist only in the case k=2. Analysis of the associated harmonic map type problem arising in the limit of small elastic constants allows to identify three types of radial profiles: with two, three or full five components. In the second part of the talk different paths for emergency of non-radially symmetric solutions and their analytical structure in 2D as well as 3D cases will be discussed. These results is a joint work with Jonathan Robbins, Valery Slastikov and Arghir Zarnescu.
 

Mon, 21 May 2018

15:45 - 16:45
L3

Invariants of the signature

JOSCHA DIEHL
(Max Planck Institute Leipzig)
Abstract

Based on classical invariant theory, I describe a complete set of elements of the signature that is invariant to the general linear group, rotations or permutations.

A geometric interpretation of some of these invariants will be given.

Joint work with Jeremy Reizenstein (Warwick).

Mon, 21 May 2018
15:45
L5

Unbounded rank expanders, property (T), and upgrading

Masato Mimura
(EPFL Lausanne)
Abstract

The problem of "unbounded rank expanders" asks 
whether we can endow a system of generators with a sequence of 
special linear groups whose degrees tend to infinity over quotient rings 
of Z such that the resulting Cayley graphs form an expander family.
Kassabov answered this question in the affirmative. Furthermore, the 
completely satisfactory solution to this question was given by 
Ershov and Jaikin--Zapirain (Invent. Math., 2010);  they proved
Kazhdan's property (T) for elementary groups over non-commutative 
rings. (T) is equivalent to the fixed point property with respect to 
actions on Hilbert spaces by isometries.

We provide a new framework to "upgrade" relative fixed point 
properties for small subgroups to the fixed point property for the 
whole group. It is inspired by work of Shalom (ICM, 2006). Our 
main criterion is stated only in terms of intrinsic group structure 
(but *without* employing any form of bounded generation). 
This, in particular, supplies a simpler (but not quantitative) 
alternative proof of the aforementioned result of Ershov and 
Jaikin--Zapirain.  

If time permits, we will discuss other applications of our result.

Mon, 21 May 2018

14:15 - 15:15
L3

Algebraic flow

DANYU YANG
(Norwegian University of Science and Technology)
Abstract

We present an algebraic formulation for the flow of a differential equation driven by a path in a Lie group. The formulation is motivated by formal differential equations considered by Chen.

Mon, 21 May 2018

14:15 - 15:15
L4

Higher rank local systems and topology of monotone Lagrangians in projective space

Momchil Konstantinov
(UCL)
Abstract

Lagrangian Floer cohomology can be enriched by using local coefficients to record some homotopy data about the boundaries of the holomorphic disks counted by the theory. In this talk I will explain how one can do this under the monotonicity assumption and when the Lagrangians are equipped with local systems of rank higher than one. The presence of holomorphic discs of Maslov index 2 poses a potential obstruction to such an extension. However, for an appropriate choice of local systems the obstruction might vanish and, if not,
one can always restrict to some natural unobstructed subcomplexes. I will showcase these constructions with some explicit calculations for the Chiang Lagrangian in CP^3 showing that it cannot be disjoined from RP^3 by a Hamiltonian isotopy, answering a question of Evans-Lekili. Time permitting, I will also discuss some work-in-progress on the topology of monotone Lagrangians in CP^3, part of which follows from more general joint work with Jack Smith on the topology of monotone Lagrangians of maximal Maslov number in
projective spaces.

 

Mon, 21 May 2018
12:45
L3

Exotic Rational Conformal Field Theories and the Modular Bootstrap

Sunil Mukhi
(IISER Pune)
Abstract

 I will summarise old and recent developments on the classification and solution of Rational Conformal Field Theories in 2 dimensions using the method of Modular Differential Equations. Novel and exotic theories are found with small numbers of characters and simple fusion rules, one of these being the Baby Monster CFT. Correlation functions for many of these theories can be computed using crossing-symmetric differential equations.

 
Fri, 18 May 2018

14:15 - 15:15
C3

Modelling Steaming Surtseyan Bombs

Mark McGuinness
(Victoria University of Wellington)
Abstract


A Surstseyan eruption is a particular kind of volcanic eruption which involves the bulk interaction of water and hot magma. Surtsey Island was born during such an eruption process in the 1940s. I will talk about mathematical modelling of the flashing of water to steam inside a hot erupted lava ball called a Surtseyan bomb. The overall motivation is to understand what determines whether such a bomb will fragment or just quietly fizzle out...
Partial differential equations model transient changes in temperature and pressure in Surtseyan ejecta. We have used a highly simplified approach to the temperature behaviour, to separate temperature from pressure. The resulting pressure diffusion equation was solved numerically and asymptotically to derive a single parametric condition for rupture of ejecta. We found that provided the permeability of the magma ball is relatively large, steam escapes rapidly enough to relieve the high pressure developed at the flashing front, so that rupture does not occur. This rupture criterion is consistent with existing field estimates of the permeability of intact Surtseyan bombs, fizzlers that have survived.
I describe an improvement of this model that allows for the fact that pressure and temperature are in fact coupled, and that the process is not adiabatic. A more systematic reduction of the resulting coupled nonlinear partial differential equations that arise from mass, momentum and energy conservation is described. We adapt an energy equation presented in G.K. Batchelor's book {\em An Introduction to Fluid Dynamics} that allows for pressure-work. This is work in progress.  Work done with Emma Greenbank, Ian Schipper and Andrew Fowler 

Fri, 18 May 2018

13:00 - 14:00
L6

A probabilistic approach to non-parametric local volatility

Martin Tegner
Abstract

The local volatility model is a celebrated model widely used for pricing and hedging financial derivatives. While the model’s main appeal is its capability of reproducing any given surface of observed option prices—it provides a perfect fit—the essential component of the model is a latent function which can only be unambiguously determined in the limit of infinite data. To (re)construct this function, numerous calibration methods have been suggested involving steps of interpolation and extrapolation, most often of parametric form and with point-estimates as result. We seek to look at the calibration problem in a probabilistic framework with a nonparametric approach based on Gaussian process priors. This immediately gives a way of encoding prior believes about the local volatility function, and a hypothesis model which is highly flexible whilst being prone to overfitting. Besides providing a method for calibrating a (range of) point-estimate, we seek to draw posterior inference on the distribution over local volatility to better understand the uncertainty attached with the calibration. Further, we seek to understand dynamical properties of local volatility by augmenting the hypothesis space with a time dimension. Ideally, this gives us means of inferring predictive distributions not only locally, but also for entire surfaces forward in time.

Fri, 18 May 2018
12:00
N3.12

Which neural codes are convex?

Anne Shiu
(Texas A&M University)
Abstract

This talk focuses on algebraic and combinatorial-topological problems motivated by neuroscience. Neural codes allow the brain to represent, process, and store information about the world. Combinatorial codes, comprised of binary patterns of neural activity, encode information via the collective behavior of populations of neurons. A code is called convex if its codewords correspond to regions defined by an arrangement of convex open sets in Euclidean space. Convex codes have been observed experimentally in many brain areas, including sensory cortices and the hippocampus,where neurons exhibit convex receptive fields. What makes a neural code convex? That is, how can we tell from the intrinsic structure of a code if there exists a corresponding arrangement of convex open sets?

This talk describes how to use tools from combinatorics and commutative algebra to uncover a variety of signatures of convex and non-convex codes.

This talk is based on joint works with Aaron Chen and Florian Frick, and with Carina Curto, Elizabeth Gross, Jack Jeffries, Katie Morrison, Mohamed Omar, Zvi Rosen, and Nora Youngs.

Thu, 17 May 2018

17:00 - 18:00
L1

Michael Atiyah - Numbers are Serious but they are also Fun

Michael Atiyah
(University of Edinburgh)
Abstract

Archimedes, who famously jumped out of his bath shouting "Eureka", also invented $\pi$. 

Euler invented $e$ and had fun with his formula $e^{2\pi i} = 1$

The world is full of important numbers waiting to be invented. Why not have a go ?

Michael Atiyah is one of the world's foremost mathematicians and a pivotal figure in twentieth and twenty-first century mathematics. His lecture will be followed by an interview with Sir John Ball, Sedleian Professor of Natural Philosophy here in Oxford where Michael will talk about his lecture, his work and his life as a mathematician.

Please email @email to register.

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Thu, 17 May 2018

16:00 - 17:00
L6

The number of quartic D4-fields with monogenic cubic resolvent ordered by conductor

Cindy Tsang
(Tsinghua University)
Abstract

It is an old problem in number theory to count number fields of a fixed degree and having a fixed Galois group for its Galois closure, ordered by their absolute discriminant, say. In this talk, I shall discuss some background of this problem, and then report a recent work with Stanley Xiao. In our paper, we considered quartic $D_4$-fields whose ring of integers has a certain nice algebraic property, and we counted such fields by their conductor.

Thu, 17 May 2018
16:00
C5

Vertex algebras and categorical Kirwan surjectivity

Jacob Gross
(Oxford University)
Abstract

The Grojnowski-Nakajima theorem states that the direct sum of the homologies of the Hilbert schemes on n points on an algebraic surface is an irreducible highest weight representation of an infinite-dimensional Heisenberg superalgebra. We present an idea to rederive the Grojnowski-Nakajima theorem using Halpern-Leistner's categorical Kirwan surjectivity theorem and Joyce's theorem that the homology of a moduli space of sheaves is a vertex algebra. We compute the homology of the moduli stack of perfect complexes of coherent sheaves on a smooth quasi-projective variety X, identify it as a (modified) lattice vertex algebra on the Lawson homology of X, and explain its relevance to the aforementioned problem.

Thu, 17 May 2018

16:00 - 17:30
L4

Accounting for the Epps Effect: Realized Covariation, Cointegration and Common Factors

Jeremy Large
(Economics (Oxford University))
Abstract

High-frequency realized variance approaches offer great promise for 
estimating asset prices’ covariation, but encounter difficulties 
connected to the Epps effect. This paper models the Epps effect in a 
stochastic volatility setting. It adds dependent noise to a factor 
representation of prices. The noise both offsets covariation and 
describes plausible lags in information transmission. Non-synchronous 
trading, another recognized source of the effect, is not required. A 
resulting estimator of correlations and betas performs well on LSE 
mid-quote data, lending empirical credence to the approach.

Thu, 17 May 2018

16:00 - 17:30
L3

Peeling and the growth of blisters

Professor John Lister
(University of Cambridge)
Abstract

The peeling of an elastic sheet away from thin layer of viscous fluid is a simply-stated and generic problem, that involves complex interactions between flow and elastic deformation on a range of length scales. 

I will illustrate the possibilities by considering theoretically and experimentally the injection and spread of viscous fluid beneath a flexible elastic lid; the injected fluid forms a blister, which spreads by peeling the lid away at the  perimeter of the blister. Among the many questions to be considered are the mechanisms for relieving the elastic analogue of the contact-line problem, whether peeling is "by bending" or "by pulling", the stability of the peeling front, and the effects of a capillary meniscus when peeling is by air injection. The result is a plethora of dynamical regimes and asymptotic scaling laws.

Thu, 17 May 2018

14:00 - 15:00
L4

Isogeometric multiresolution shape and topology optimisation

Dr. Fehmi Cirak
(Cambridge)
Abstract

Advances in manufacturing technologies, most prominently in additive manufacturing or 3d printing, are making it possible to fabricate highly optimised products with increasing geometric and hierarchical complexity. This talk will introduce our ongoing work on design optimisation that combines CAD-compatible geometry representations, multiresolution geometry processing techniques and immersed finite elements with classical shape and topology calculus. As example applications,the shape optimisation of mechanical structures and electromechanical components, and the topology optimisation of lattice-skin structures will be discussed.

Wed, 16 May 2018

16:00 - 17:00
C5

Thompson's Group

Sam Shepherd
(University of Oxford)
Abstract

Thompson's group F is a group of homeomorphisms of the unit interval which exhibits a strange mix of properties; on the one hand it has some self-similarity type properties one might expect of a really big group, but on the other hand it is finitely presented. I will give a proof of finite generation by expressing elements as pairs of binary trees.

Wed, 16 May 2018

16:00 - 17:00
L6

On some connections between domain geometry and blow-up type in a nonlinear heat equation

Mikołaj Sierżęga
(University of Warsaw)
Abstract

The Fujita equation $u_{t}=\Delta u+u^{p}$, $p>1$, has been a canonical blow-up model for more than half a century. A great deal is known about the singularity formation under a variety of conditions. In particular we know that blow-up behaviour falls broadly into two categories, namely Type I and Type II. The former is generic and stable while the latter is rare and highly unstable. One of the central results in the field states that in the Sobolev subcritical regime, $1<p<\frac{n+2}{n-2}$, $n\geq 3$, only type I is possible whenever the domain is \emph{convex} in $\mathbb{R}^n$. Despite considerable effort the requirement of convexity has not been lifted and it is not clear whether this is an artefact of the methodology or whether the geometry of the domain may actually affect the blow-up type. In my talk I will discuss how the question of the blow-up type for non-convex domains is intimately related to the validity of some Li-Yau-Hamilton inequalities.

Wed, 16 May 2018
15:00

Challenges of End-to-End Encryption in Facebook Messenger

Jon Millican
(Facebook)
Abstract

In 2016, Facebook added an optional end-to-end (E2E) encryption feature called Secret Conversations to Messenger. This was challenging to design, as many of Messenger's key properties and features don't fit the typical model of E2E apps. Additionally, Messenger is already one of the world's most popular messaging apps, supporting nearly a billion people across a variety of technical and cultural environments. Because of this, Messenger's deployment of E2E encryption provides attendees with a valuable case study on how to build usable, secure products. 

We will discuss the core properties of a typical E2E app, the core features of Messenger, the distance between the two, and the approach we took to close the gap. We'll examine how minimizing the distance shaped the current E2E experience within Messenger. Through discussion of the key decisions in this process, we'll address the implications for alternative designs with real world comparisons where they exist. 

Although Secret Conversations in Messenger use off-the-shelf Signal Protocol for message encryption, Facebook also wanted to ensure a safe communication channel for community members who may be victims of online abuse. To this end, we created a way for people to report secret conversations that violate our Community Standards, without breaking any E2E guarantees for other messages.

Developing a reporting protocol created an interesting challenge: the potential of fake reports with no intermediary to invalidate them. To pre-empt the possibility of Bob forging a report to incriminate Alice, we added a method that uses two HMACs - one added by the sender and one by Facebook - to “cryptographically frank” messages as we forward them from one party to the other (physical mail uses a similar franking). This technique ensures similar confidence that a report is genuine as we have for messages stored in plaintext on our servers. Additionally, the frank is only verifiable by Facebook after receiving a report from the recipient, thus preventing a third party from using it as evidence against the sender.

We hope that this talk will provide an insight into the intricacies of deploying security features at scale, and the additional considerations necessary when developing an existing product.

Tue, 15 May 2018
17:00
C1

Why do circles in the spectrum matter?

Yuri Tomilov
(Polish Academy of Sciences)
Abstract


I plan to present several results linking the numerical range of a Hilbert space operator to the circle structure of its spectrum. I'll try to explain how the numerical ranges approach helps to unify, extend or supplement several results where the circular structure of the spectrum is crucial, e.g. Arveson's theorem on almost-wandering vectors of unitary actions and Hamdan's recent result on supports of Rajchman measures. Moreover, I'll give several applications of the approach to new operator-theoretical constructions inverse in a sense to classical power dilations. If time permits, I'll also address the same or similar issues in a more general setting of operator tuples. This is joint work with V. M\" uller (Prague).