Thu, 09 Nov 2017
16:00
C5

The Quantum Steenrod Square and its Properties

Nicholas Wilkins
(Oxford University)
Abstract

Topologists have the Steenrod squares, a collection of additive homomorphisms on the Z/2 cohomology of a space M. They can be defined axiomatically and are often be regarded as algebraic operations on cohomology groups (for many purposes). However, Betz and Cohen showed that they could be viewed geometrically. 

Symplectic geometers have quantum cohomology, which on a symplectic manifold M is a deformation of singular cohomology using holomorphic spheres.

The geometric definition of the Steenrod square extends to quantum cohomology. This talk will describe the Steenrod square and quantum cohomology in terms of the intersection product, and then give a description of this quantum Steenrod square by putting these both together. We will describe some properties of the quantum squares, such as the quantum Cartan formula, and perform calculations in certain cases.

Thu, 09 Nov 2017
16:00
L6

Probabilistic arithmetic geometry

Daniel Loughran
(Manchester)
Abstract

A famous theorem due to Erdős and Kac states that the number of prime divisors of an integer N behaves like a normal distribution. In this talk we consider analogues of this result in the setting of arithmetic geometry, and obtain probability distributions for questions related to local solubility of algebraic varieties. This is joint work with Efthymios Sofos.

Thu, 09 Nov 2017

16:00 - 17:30
L3

Phase-Ordering and the Principle of G-Equivariant Universality

Stephen Watson
(University of Glasgow)
Abstract

The statistical physics governing phase-ordering dynamics following a symmetry breaking rst-order phase transition is an area of active research. The Coarsening/Ageing of the ensemble of phase domains, wherein irreversible annihilation or joining of domains yields a growing characteristic domain length, is an omniprescent feature whose universal characteristics one would wish to understand. Driven kinetic Ising models and growing nano-faceted crystals are theoretically important examples of such Coarsening (Ageing) Dynamical Systems (CDS), since they additionally break thermodynamic uctuation-dissipation relations. Power-laws for the growth in time of the characteristic size of domains, and a concomitant scale-invariance of associated length distributions, have so frequently been empirically observed that their presence has acquired the status of a principle; the so-called Dynamic-Scaling Hypothesis. But the dynamical symmetries of a given CDS- its Coarsening Group G - may include more than the global spatio-temporal scalings underlying the Dynamic Scaling Hypothesis. In this talk, I will present a recently developed theoretical framework (Ref.[1]) that shows how the symmetry group G of a Coarsening (ageing) Dynamical System necessarily yields G-equivariance (covariance) of its universal statistical observables. We exhibit this theory for a variety of model systems, of both thermodynamic and driven type, with symmetries that may also be Emergent (Ref. [2,3]) and/or Hidden. We will close with a magical theoretical coarsening law that combines Lorentzian and Parabolic symmetries!

References
[1] Lorentzian symmetry predicts universality beyond scaling laws, SJ Watson, EPL 118 (5), 56001, (Aug.2, 2017) Editor's Choice
[2] Emergent parabolic scaling of nano-faceting crystal growth Stephen J. Watson, Proc. R. Soc. A 471: 20140560 (2015)
[3] Scaling Theory and Morphometrics for a Coarsening Multiscale Surface, via a Principle of Maximal Dissipation", Stephen

Thu, 09 Nov 2017

16:00 - 17:30
L4

Convergence of utility indifference prices to the superreplication price in a multiple-priors framework Joint work with Romain Blanchard

Laurence Carassus
(De Vinci Pôle Universitaire and Université de Reims)
Abstract

This paper formulates an utility indifference pricing model for investors trading in a discrete time financial market under non-dominated model uncertainty.
The investors preferences are described by strictly increasing concave random functions defined on the positive axis. We prove that under suitable
conditions the multiple-priors utility indifference prices of a contingent claim converge to its multiple-priors superreplication price. We also
revisit the notion of certainty equivalent for random utility functions and establish its relation with the absolute risk aversion.

Thu, 09 Nov 2017

12:00 - 13:00
L4

Two-dimensional pseudo-gravity model: particles motion in a non-potential singular force field

Dan Crisan
(Department of Mathematics, Imperial College London)
Abstract

I will describe a simple macroscopic model describing the evolution of a cloud of particles confined in a magneto-optical trap. The behavior of the particles is mainly driven by self--consistent attractive forces. In contrast to the standard model of gravitational forces, the force field does not result from a potential; moreover, the nonlinear coupling is more singular than the coupling based on the Poisson equation.  In addition to existence of uniqueness results of the model PDE, I will discuss the convergence of the  particles description towards the solution of the PDE system in the mean field regime.

Wed, 08 Nov 2017

17:00 - 18:15
L3

Insect Flight: From Newton's Law to Neurons

Jane Wang
(Cornell University)
Abstract

To fly is not to fall. How does an insect fly, why does it fly so well, and how can we infer its ‘thoughts’ from its flight dynamics?  We have been seeking  mechanistic explanations of the complex movement of insect flight. Starting from the Navier-Stokes equations governing the unsteady aerodynamics of flapping flight, a  theoretical framework for computing flight leads to new interpretations and predictions of the functions of an insect’s internal machinery that orchestrate its flight. The talk will discuss recent computational and experimental studies of the balancing act of dragonflies and fruit flies:  how a dragonfly recovers from falling upside-down and how a fly balances in air. In each case,  the physics of flight informs us about the neural feedback circuitries underlying their fast reflexes.

Wed, 08 Nov 2017

16:00 - 17:00
C5

When are two right angled Artin groups quasi-isometric?

Alexander Margolis
(University of Oxford)
Abstract

I will give a survey of known results about when two RAAGs are quasi-isometric, and will then describe a visual graph of groups decomposition of a RAAG (its JSJ tree of cylinders) that can often be used to determine whether or not two RAAGs are quasi-isometric.

Wed, 08 Nov 2017
15:00
L4

Adaptive Oblivious Transfer with Access Control from Lattice Assumptions

Fabrice Mouhartem
(ENS Lyon)
Abstract

Adaptive oblivious transfer (OT) is a protocol where a sender
initially commits to a database {M_i}_{i=1}^N . Then, a receiver can query the
sender up to k times with private indexes ρ_1, …, ρ_k so as to obtain
M_{ρ_1}, …, M_{ρ_k} and nothing else. Moreover, for each i ∈ [k], the receiver’s
choice ρ_i may depend on previously obtained messages {M_ρ_j}_{j<i} . Oblivious transfer
with access control (OT-AC) is a flavor of adaptive OT
where database records are protected by distinct access control policies
that specify which credentials a receiver should obtain in order to access
each M_i . So far, all known OT-AC protocols only support access policies
made of conjunctions or rely on ad hoc assumptions in pairing-friendly
groups (or both). In this paper, we provide an OT-AC protocol where access policies may consist of any branching program of polynomial length, which is sufficient to realize any access policy in NC^1. The security of
our protocol is proved under the Learning-with-Errors (LWE) and Short-
Integer-Solution (SIS) assumptions. As a result of independent interest,
we provide protocols for proving the correct evaluation of a committed
branching program on a committed input.

Joint work with Benoît Libert, San Ling, Khoa Nguyen and Huaxiong Wang.

Wed, 08 Nov 2017
11:00
S1.37

Neretin's group of spheromorphisms

David Hume
Abstract

By way of shameless advertising for a TCC course I hope to give next term on the theory of totally disconnected locally compact groups, I will present two interesting and illuminating examples of such groups: the full automorphism group of a regular tree, and Neretin's group of spheromorphisms
 

Tue, 07 Nov 2017

16:00 - 17:00
L5

Topological dynamics and the complexity of strong types

Krzysztof Krupiński
(University of Wrocław)
Abstract

The talk is based on my joint work with Anand Pillay and Tomasz Rzepecki.

I will describe some connections between various objects from topological dynamics associated with a given first order theory and various Galois groups of this theory. One of the main corollaries is a natural presentation of the closure of the neutral element of the Lascar Galois group of any given theory $T$ (this closure is a group sometimes denoted by $Gal_0(T)$) as a quotient of a compact Hausdorff group by a dense subgroup.

As an application, I will present a very general theorem concerning the complexity of bounded, invariant equivalence relations (whose classes are sometimes called strong types) in countable theories, generalizing a theorem of Kaplan, Miller and Simon concerning Borel cardinalities of Lascar strong types and also later extensions of this result to certain bounded, $F_\sigma$ equivalence relations (which were obtained in a paper of Kaplan and Miller and, independently, in a paper of Rzepecki and myself). The main point of our general theorem says that in a countable theory, any bounded, invariant equivalence relation defined
on the set of realizations of a single complete type over $\emptyset$ is type-definable if and only if it is smooth (in the sense of descriptive set theory). If time permits, I will very briefly mention more recent developments in this direction (also based on the results from the first paragraph) which will appear in my future paper with Rzepecki.
 

Tue, 07 Nov 2017

15:45 - 16:45
L4

Jumps and motivic invariants of semiabelian Jacobians

Otto Overkamp
(Imperial College)
Abstract

We investigate Néron models of Jacobians of singular curves over strictly Henselian discretely valued fields, and their behaviour under tame base change. For a semiabelian variety, this behaviour is governed by a finite sequence of (a priori) real numbers between 0 and 1, called "jumps". The jumps are conjectured to be rational, which is known in some cases. The purpose of this paper is to prove this conjecture in the case where the semiabelian variety is the Jacobian of a geometrically integral curve with a push-out singularity. Along the way, we prove the conjecture for algebraic tori which are induced along finite separable extensions, and generalize Raynaud's description of the identity component of the Néron model of the Jacobian of a smooth curve (in terms of the Picard functor of a proper, flat, and regular model) to our situation. The main technical result of this paper is that the exact sequence which decomposes the Jacobian of one of our singular curves into its toric and Abelian parts extends to an exact sequence of Néron models. Previously, only split semiabelian varieties were known to have this property.

Tue, 07 Nov 2017

14:30 - 15:00
L5

Monte Carlo integration: variance reduction by function approximation

Yuji Nakatsukasa
(University of Oxford)
Abstract

Classical algorithms for numerical integration (quadrature/cubature) proceed by approximating the integrand with a simple function (e.g. a polynomial), and integrate the approximant exactly. In high-dimensional integration, such methods quickly become infeasible due to the curse of dimensionality.


A common alternative is the Monte Carlo method (MC), which simply takes the average of random samples, improving the estimate as more and more samples are taken. The main issue with MC is its slow "sqrt(variance/#samples)" convergence, and various techniques have been proposed to reduce the variance.


In this work we reveal a numerical analyst's interpretation of MC: it approximates the integrand with a simple(st) function, and integrates that function exactly. This observation leads naturally to MC-like methods that combines MC with function approximation theory, including polynomial approximation and sparse grids. The resulting method can be regarded as another variance reduction technique for Monte Carlo.

Tue, 07 Nov 2017
14:30
L6

On Reed's Conjecture

Luke Postle
(University of Waterloo)
Abstract

Reed conjectured in 1998 that the chromatic number of a graph should be at most the average of the clique number (a trivial lower bound) and maximum degree plus one (a trivial upper bound); in support of this conjecture, Reed proved that the chromatic number is at most some nontrivial convex combination of these two quantities.  King and Reed later showed that a fraction of roughly 1/130000 away from the upper bound holds. Motivated by a paper by Bruhn and Joos, last year Bonamy, Perrett, and I proved that for large enough maximum degree, a fraction of 1/26 away from the upper bound holds. Then using new techniques, Delcourt and I showed that the list-coloring version holds; moreover, we improved the fraction for ordinary coloring to 1/13. Most recently, Kelly and I proved that a 'local' list version holds with a fraction of 1/52 wherein the degrees, list sizes, and clique sizes of vertices are allowed to vary.
 

Tue, 07 Nov 2017

14:00 - 14:30
L5

OSQP: An Operator Splitting Solver for Quadratic Programs

Bartolomeo Stellato
(Oxford University)
Abstract

We develop a general purpose solver for quadratic programs based on operator splitting. We introduce a novel splitting that requires the solution of a quasi-definite linear system with the same coefficient matrix in each iteration. The resulting algorithm is very robust, and once the initial factorization is carried out, division free; it also eliminates requirements on the problem data such as positive definiteness of the objective function or linear independence of the constraint functions. Moreover, it is able to detect primal or dual infeasible problems providing infeasibility certificates. The method supports caching the factorization of the quasi-definite system and warm starting, making it efficient for solving parametrized problems arising in finance, control, and machine learning. Our open-source C implementation OSQP has a small footprint and is library-free. Numerical benchmarks on problems arising from several application domains show that OSQP is typically 10x faster than interior-point methods, especially when factorization caching or warm start is used.


This is joint work with Goran Banjac, Paul Goulart, Alberto Bemporad and Stephen Boyd
 

Tue, 07 Nov 2017

12:00 - 13:00
C3

Optimal modularity maximisation in multilayer networks

Roxana Pamfil
(University of Oxford)
Abstract

Identifying clusters or "communities" of densely connected nodes in networks is an active area of research, with relevance to many applications. Recent advances in the field have focused especially on temporal, multiplex, and other kinds of multilayer networks.

One method for detecting communities in multilayer networks is to maximise a generalised version of an objective function known as modularity. Writing down multilayer modularity requires the specification of two types of resolution parameters, and choosing appropriate values is crucial for uncovering meaningful community structure. In the simplest case, there are just two parameters, one controlling the sizes of detected communities, and the other influencing how much communities change from layer to layer. By establishing an equivalence between modularity optimisation and a multilayer maximum-likelihood approach to community detection, we are able to determine statistically optimal values for these two parameters. 

When applied to existing multilayer benchmarks, our optimized approach performs significantly better than using parameter choices guided by heuristics. We also apply the method to supermarket data, revealing changes in consumer behaviour over time.

Tue, 07 Nov 2017
12:00
L4

Thirty years of transplanckian-energy collisions: where do we stand?

Gabriele Veneziano
(Cern)
Abstract

I will start with a quick reminder of what we have learned so far about
transplanckian-energy collisions of particles, strings and branes.
I will then address the (so-far unsolved) problem of gravitational
bremsstrahlung from massless particle collisions at leading order in the
gravitational deflection angle.
Two completely different calculations, one classical and one quantum, lead
to the same final, though somewhat puzzling, result.

 

Mon, 06 Nov 2017

16:00 - 17:00
L4

Thin liquid films influenced by thermal fluctuations: modeling, analysis, and simulation

Günther Grün
(Universität Erlangen-Nürnberg)
Abstract

For liquid films with a thickness in the order of 10¹−10³ molecule layers, classical models of continuum mechanics do not always give a precise description of thin-film evolution: While morphologies of film dewetting are captured by thin-film models, discrepancies arise with respect to time-scales of dewetting.

In this talk, we study stochastic thin-film equations. By multiplicative noise inside an additional convective term, these stochastic partial differential equations differ from their deterministic counterparts, which are fourth-order degenerate parabolic. First, we present some numerical simulations which indicate that the aforementioned discrepancies may be overcome under the influence of noise.

In the main part of the talk, we prove existence of almost surely nonnegative martingale solutions. Combining spatial semi-discretization with appropriate stopping time arguments, arbitrary moments of coupled energy/entropy functionals can be controlled.

Having established Hölder regularity of approximate solutions, the convergence proof is then based on compactness arguments - in particular on Jakubowski’s generalization of Skorokhod’s theorem - weak convergence methods, and recent tools for martingale convergence.

The results have been obtained in collaboration with K. Mecke and M. Rauscher and with J. Fischer, respectively

Mon, 06 Nov 2017
15:45
L6

Higher algebra and arithmetic

Lars Hesselholt
(Nagoya University and University of Copenhagen)
Abstract

This talk concerns a twenty-thousand-year old mistake: The natural numbers record only the result of counting and not the process of counting. As algebra is rooted in the natural numbers, the higher algebra of Joyal and Lurie is rooted in a more basic notion of number which also records the process of counting. Long advocated by Waldhausen, the arithmetic of these more basic numbers should eliminate denominators. Notable manifestations of this vision include the Bökstedt-Hsiang-Madsen topological cyclic homology, which receives a denominator-free Chern character, and the related Bhatt-Morrow-Scholze integral p-adic Hodge theory, which makes it possible to exploit torsion cohomology classes in arithmetic geometry. Moreover, for schemes smooth and proper over a finite field, the analogue of de Rham cohomology in this setting naturally gives rise to a cohomological interpretation of the Hasse-Weil zeta function by regularized determinants as envisioned by Deninger.

Mon, 06 Nov 2017

15:45 - 16:45
L3

Karhunen Loeve expansions in regularity structures.

SINA NEJAD
(University of Oxford)
Abstract

We consider L^2-approximations of white noise within the framework of regularity structures. Possible applications include support theorems for SPDEs driven by degenerate noises and numerics. Joint work with Ilya Chevyrev, Peter Friz and Tom Klose. 

Mon, 06 Nov 2017
14:15
L5

An obstruction to planarity of contact structures

Marco Golla
(Oxford)
Abstract


We give new obstructions to the existence of planar open books on contact structures, in terms of the homology of their fillings. I will talk about applications to links of surface singularities, Seifert fibred spaces, and integer homology spheres. No prior knowledge of contact or symplectic topology will be assumed. This is joint work with Paolo Ghiggini and Olga Plamenevskaya.
 

Mon, 06 Nov 2017

14:15 - 15:15
L3

Volume distribution of nodal domains of random band-limited functions

IGOR WIGMAN
(Kings College London)
Abstract

This talk is based on a joint work with Dmitry Beliaev.

We study the volume distribution of nodal domains of families of naturally arising Gaussian random field on generic manifolds, namely random band-limited functions. It is found that in the high energy limit a typical instance obeys a deterministic universal law, independent of the manifold. Some of the basic qualitative properties of this law, such as its support, monotonicity and continuity of the cumulative probability function, are established.

Mon, 06 Nov 2017
12:45
L3

On the Vafa-Witten theory on closed four-manifolds

Yuuji Tanaka
(Oxford)
Abstract

We discuss mathematical studies on the Vafa-Witten theory, one of topological twists of N=4 super Yang-Mills theory in four dimensions, from the viewpoints of both differential and algebraic geometry. After mentioning backgrounds and motivation, we describe some issues to construct mathematical theory of this Vafa-Witten one, and explain possible ways to sort them out by analytic and algebro-geometric methods, the latter is joint work with Richard Thomas.