Tue, 14 Feb 2017

13:00 - 14:00
N3.12

Euler calculus

N. Otter and B. Mahler
Mon, 13 Feb 2017

15:45 - 16:45
L3

Probabilistic Numerical Computation: A New Concept?

MARK GIROLAMI
(Imperial College London)
Abstract

Ambitious mathematical models of highly complex natural phenomena are challenging to analyse, and more and more computationally expensive to evaluate. This is a particularly acute problem for many tasks of interest and numerical methods will tend to be slow, due to the complexity of the models, and potentially lead to sub-optimal solutions with high levels of uncertainty which needs to be accounted for and subsequently propagated in the statistical reasoning process. This talk will introduce our contributions to an emerging area of research defining a nexus of applied mathematics, statistical science and computer science, called "probabilistic numerics". The aim is to consider numerical problems from a statistical viewpoint, and as such provide numerical methods for which numerical error can be quantified and controlled in a probabilistic manner. This philosophy will be illustrated on problems ranging from predictive policing via crime modelling to computer vision, where probabilistic numerical methods provide a rich and essential quantification of the uncertainty associated with such models and their computation. 

Mon, 13 Feb 2017

15:45 - 16:45
L6

The SO(3) action on the space of finite tensor categories

Noah Snyder
(Indiana University)
Abstract

The cobordism hypothesis gives a correspondence between the
framed local topological field theories with values in C and a fully
dualizable objects in C.  Changing framing gives an O(n) action on the
space of local TFTs, and hence by the cobordism hypothesis it gives a
(homotopy coherent) action of O(n) on the space of fully dualizable
objects in C.  One example of this phenomenon is that O(3) acts on the
space of fusion categories.  In fact, O(3) acts on the larger space of
finite tensor categories.  I'll describe this action explicitly and
discuss its relationship to the double dual, Radford's theorem,
pivotal structures, and spherical structures.  This is part of work in
progress joint with Chris Douglas and Chris Schommer-Pries.
 

Mon, 13 Feb 2017

14:15 - 15:15
L3

Sub-Quadratic Recovery of Correlated Pair

GRAHAM CORMODE
(University of Warwick)
Abstract

Identifying correlations within multiple streams of high-volume time series is a general but challenging problem.  A simple exact solution has cost that is linear in the dimensionality of the data, and quadratic in the number of streams.  In this work, we use dimensionality reduction techniques (sketches), along with ideas derived from coding theory and fast matrix multiplication to allow fast (subquadratic) recovery of those pairs that display high correlation.

Joint work with Jacques Dark

Mon, 13 Feb 2017

14:15 - 15:15
L4

Gauge Theory and Symplectic Duality

Matt Bullimore
(Oxford)
Abstract

Symplectic duality is an equivalence of mathematical structures associated to pairs of hyper-Kahler cones. All known examples arise as the `Higgs branch’ and `Coulomb branch' of a 3d superconformal quantum field theory. In particular, there is a rich class of examples where the Higgs branch is a Nakajima quiver variety and the Coulomb branch is a moduli spaceof singular magnetic monopoles. In this case, I will show that the equivariant cohomology of the moduli space of based quasi-maps to the Higgs branch transforms as a Verma module for the deformation quantisation of the Coulomb branch

Mon, 13 Feb 2017

12:45 - 13:45
L3

Alternate Mirror Families and Hypergeometric Motives

Adriana Salerno
(Bates College Maine)
Abstract

Mirror symmetry predicts surprising geometric correspondences between distinct families of algebraic varieties. In some cases, these correspondences have arithmetic consequences. Among the arithmetic correspondences predicted by mirror symmetry are correspondences between point counts over finite fields, and more generally between factors of their Zeta functions. In particular, we will discuss our results on a common factor for Zeta functions alternate families of invertible polynomials. We will also explore closed formulas for the point counts for our alternate mirror families of K3 surfaces and their relation to their Picard–Fuchs equations. Finally, we will discuss how all of this relates to hypergeometric motives. This is joint work with: Charles Doran (University of Alberta, Canada), Tyler Kelly (University of Cambridge, UK), Steven Sperber (University of Minnesota, USA), John Voight (Dartmouth College, USA), and Ursula Whitcher (American Mathematical Society, USA).

 
Fri, 10 Feb 2017

16:00 - 17:00
L1

Self-organized dynamics: from emergence of consensus to social hydrodynamics

Eitan Tadmor
(University of Maryland and ETH-ITS)
Abstract

Self-organization is observed in systems driven by the “social engagement” of agents with their local neighbors. Prototypical models are found in opinion dynamics, flocking, self-organization of biological organisms, and rendezvous in mobile networks.

We discuss the emergent behavior of such systems. Two natural questions arise in this context. The underlying issue of the first question is how different rules of engagement influence the formation of clusters, and in particular, the emergence of 'consensus'. Different paradigms of emergence yield different patterns, depending on the propagation of connectivity of the underlying graphs of communication.  The second question involves different descriptions of self-organized dynamics when the number of agents tends to infinity. It lends itself to “social hydrodynamics”, driven by the corresponding tendency to move towards the local means. 

We discuss the global regularity of social hydrodynamics for sub-critical initial configurations.

Fri, 10 Feb 2017

13:00 - 14:00
L6

On optimal Skorokhod embedding

Gaoyue Guo
Abstract

The Skorokhod embedding problem aims to represent a given probability measure on the real line as the distribution of Brownian motion stopped at a chosen stopping time. In this talk, we consider an extension of the weak formulation of the optimal Skorokhod embedding problem. Using the classical convex duality approach together with the optimal stopping theory, we establish some duality. Moreover, based on the duality, we provide an alternative proof of the monotonicity principle proved by Beiglbock, Cox and Huesmann.

Thu, 09 Feb 2017
17:30
L6

Quasianalytic Ilyashenko algebras

Patrick Speissegger
(Mcmaster)
Abstract

In 1923, Dulac published a proof of the claim that every real analytic vector field on the plane has only finitely many limit cycles (now known as Dulac's Problem). In the mid-1990s, Ilyashenko completed Dulac's proof; his completion rests on the construction of a quasianalytic class of functions. Unfortunately, this class has very few known closure properties. For various reasons I will explain, we are interested in constructing a larger quasianalytic class that is also a Hardy field. This can be achieved using Ilyashenko's idea of superexact asymptotic expansion.  (Joint work with Tobias Kaiser)

Thu, 09 Feb 2017

16:00 - 17:00
C5

Finiteness properties of subgroups of hyperbolic groups

Giles Gardam
((Oxford University))
Abstract

Hyperbolic groups were introduced by Gromov and generalize the fundamental groups of closed hyperbolic manifolds. Since a closed hyperbolic manifold is aspherical, it is a classifying space for its fundamental group, and a hyperbolic group will also admit a compact classifying space in the torsion-free case. After an introduction to this and other topological finiteness properties of hyperbolic groups and their subgroups, we will meet a construction of R. Kropholler, building on work of Brady and Lodha. The construction gives an infinite family of hyperbolic groups with finitely-presented subgroups which are non-hyperbolic by virtue of their finiteness properties. We conclude with progress towards determining minimal examples of the "sizeable" graphs which are needed as input to the construction.

Thu, 09 Feb 2017

16:00 - 17:00
L3

Computational Immunology: What happens when a computer scientist falls in love with immunology

Soumya Banerjee
(University of Oxford)
Abstract

The immune system finds very rare amounts of pathogens and responds against them in a timely and efficient manner. The time to find and respond against pathogens does not vary appreciably with the size of the host animal (scale invariant search and response). This is surprising since the search and response against pathogens is harder in larger animals.

The first part of the talk will focus on using techniques from computer science to solve problems in immunology, specifically how the immune system achieves scale invariant search and response. I use machine learning techniques, ordinary differential equation models and spatially explicit agent based models to understand the dynamics of the immune system. I will talk about Hierarchical Bayesian non-linear mixed effects models to simulate immune response in different species.

The second part of the talk will focus on taking inspiration from the immune system to solve problems in computer science. I will talk about a model that describes the optimal architecture of the immune system and then show how architectures and strategies inspired by the immune system can be used to create distributed systems with faster search and response characteristics.

I argue that techniques from computer science can be applied to the immune system and that the immune system can provide valuable inspiration for robust computing in human engineered distributed systems.

Thu, 09 Feb 2017

16:00 - 17:00
L6

A logarithmic interpretation of Edixhoven's jumps for Jacobians

Johannes Nicaise
(Imperial College London)
Abstract

Let A be an abelian variety over a strictly henselian discretely valued field K. In his 1992 paper "Néron models and tame ramification", Edixhoven has constructed a filtration on the special fiber of the Néron model of A that measures the behaviour of the Néron model with respect to tamely ramified extensions of K. The filtration is indexed by rational numbers in [0,1], and if A is wildly ramified, it is an open problem whether the places where it jumps are always rational. I will explain how an interpretation of the filtration in terms of logarithmic geometry leads to explicit formulas for the jumps in the case where A is a Jacobian, which confirms in particular that they are rational. This is joint work with Dennis Eriksson and Lars Halvard Halle.

Thu, 09 Feb 2017

16:00 - 17:30
L4

Time Consistency in Decision Making

Igor Cialenco
Abstract

We propose a new flexible unified framework for studying the time consistency property suited for a large class of maps defined on the set of all cash flows and that are postulated to satisfy only two properties -- monotonicity and locality. This framework integrates the existing forms of time consistency for dynamic risk measures and dynamic performance measures (also known as acceptability indices). The time consistency is defined in terms of an update rule, a novel notion that would be discussed into details and illustrated through various examples. Finally, we will present some connections between existing popular forms of time consistency. 
This is a joint work with Tomasz R. Bielecki and Marcin Pitera.

Thu, 09 Feb 2017

13:00 - 14:00
L6

tba

tba
Thu, 09 Feb 2017
12:00
L5

Analyticity of Rotational Travelling Water Waves

Joachim Escher
(Gottfried Wilhelm Leibniz Universität Hannover)
Abstract
Of concern is the regularity of solutions to the classical water wave problem for two-dimensional Euler flows with vorticity. It is shown that the profile together with all streamlines beneath a periodic water wave travelling over a flat bed are real-analytic curves, provided that the vorticity function is merely integrable and that there are no stagnation points in the flow. It is furthermore exposed that the analyticity of streamlines can be used to characterise intrinsically symmetric water waves. 
Thu, 09 Feb 2017
11:00
C5

The topological closure of algebraic and o-minimal flows in compact tori

Kobi Peterzil
(Haifa)
Abstract

(joint work with Sergei Starchenko)

Let p:C^n ->A be the covering map of a complex abelian variety and let X be an algebraic variety of C^n, or more generally a definable set in an o-minimal expansion of the real field. Ullmo and Yafaev investigated the topological closure of p(X) in A in the above two  settings and conjectured that the frontier of p(X) can be described, when X is algebraic as finitely many cosets of real sub tori of A, They proved the conjecture when dim X=1. They make a similar conjecture for X definable in an o-minimal structure.

In recent work we show that the above conjecture fails as stated, and prove a modified version,  describing the frontier of p(X) as finitely many families of cosets of subtori. We prove a similar result when X is a definable set in an o-minimal structure and p:R^n-> T is the covering map of a real torus.  The proofs use model theory of o-minimal structures as well as algebraically closed valued fields.

Wed, 08 Feb 2017

16:00 - 17:30
L1

Statistics: Why the Truth Matters - Tim Harford

Tim Harford
Abstract

Tim Harford, Financial Times columnist and presenter of Radio 4's "More or Less", argues that politicians, businesses and even charities have been poisoning the value of statistics and data. Tim will argue that we need to defend the value of good data in public discourse, and will suggest how to lead the defence of statistical truth-telling.

Please email @email to register 

Wed, 08 Feb 2017

11:00 - 12:00
N3.12

TBC

Thomas Wasserman
(University of Oxford)
Tue, 07 Feb 2017
17:00
C1

Banach-Stone type theorems on spaces of probability measures

Gyorgy Geher
(Reading)
Abstract

The classical Banach-Stone theorem describes the structure of onto linear isometries of the Banach space $C(K)$ of all continuous functions on a compact Hausdorff space $K$. Namely, such an isometry is always a product of a composition operator with a homeomorphism symbol and a multiplication operator with a continuous symbol which has modulus 1.

Recently, similar results have been obtained in the setting of certain class of probability measures. In my talk first, I will give an overview of these results, and then I will present the main ideas of a recent work. Namely, I will provide a characterisation of all surjective isometries of the (non-linear) space of all Borel probability measures on an arbitrary separable Banach space with respect to the famous Levy-Prokhorov distance (which metrises the weak convergence). This is a recent joint work with Tamas Titkos (MTA Alfred Renyi Institute of Mathematics, Budapest, Hungary).

Tue, 07 Feb 2017

15:45 - 16:45
L4

Quantum character varieties and the double affine Hecke algebra

David Jordan
(Edinburgh)
Abstract

The character variety of a manifold is a moduli space of representations of its fundamental group into some fixed gauge group.  In this talk I will outline the construction of a fully extended topological field theory in dimension 4, which gives a uniform functorial quantization of the character varieties of low-dimensional manifolds, when the gauge group is reductive algebraic (e.g. $GL_N$).

I'll focus on important examples in representation theory arising from the construction, in genus 1:  spherical double affine Hecke algebras (DAHA), difference-operator q-deformations of the Grothendieck-Springer sheaf, and the construction of irreducible DAHA modules mimicking techniques in classical geometric representation theory.  The general constructions are joint with David Ben-Zvi, Adrien Brochier, and Noah Snyder, and applications to representation theory of DAHA are joint with Martina Balagovic and Monica Vazirani.