Mon, 05 Dec 2016

16:00 - 17:00
L4

Parabolic problems with critical growth

Anna Verde
Abstract

I will discuss on the existence and regularity results for the heat flow of the so called H-systems and for more general parabolic p-laplacian problems with critical growth.

Fri, 02 Dec 2016

16:00 - 17:00
L1

Topologically Ordered Matter and Why You Should be Interested

Steve Simon
(University of Oxford)
Abstract

In two dimensional topological phases of matter, processes depend on gross topology rather than detailed geometry. Thinking in 2+1 dimensions, the space-time histories of particles can be interpreted as knots or links, and the amplitude for certain processes becomes a topological invariant of that link. While sounding rather exotic, we believe that such phases of matter not only exist, but have actually been observed (or could be soon observed) in experiments. These phases of matter could provide a uniquely practical route to building a quantum computer. Experimental systems of relevance include Fractional Quantum Hall Effects, Exotic superconductors such as Strontium Ruthenate, Superfluid Helium, Semiconductor-Superconductor-Spin-Orbit systems including Quantum Wires. The physics of these systems, and how they might be used for quantum computation will be discussed.

Fri, 02 Dec 2016
14:15
C3

Wetropolis flood demonstrator

Onno Bokhove
(School of Mathematics, University of Leeds)
Abstract

The mathematical design of the table flood demonstrator Wetropolis will be presented. Wetropolis illustrates the concepts of extreme rainfall and flooding.

It shows how extreme rainfall events  can cause flooding of a city due to groundwater and river flood peaks. Rainfall is supplied randomly in space using four outcomes (in a reservoir, on a moor, at both places or nowhere) and randomly in time using four rainfall intensities (1s, 2s, 4s, or 9s during a 10s Wetropolis day), including one extreme event, via two skew-symmetric discrete probability distributions visualised by two Galton boards. Wetropolis can be used for both public outreach and as scientific testing environment for flood mitigation and data assimilation.

More information: https://www.facebook.com/resurging.flows

Fri, 02 Dec 2016

13:00 - 14:00
L6

High-order filtered schemes for time-dependent second order HJB equations

Christoph Reisinger
(Mathematical Institute)
Abstract

In this talk, we present and analyse a class of “filtered” numerical schemes for second order Hamilton-Jacobi-Bellman (HJB) equations, with a focus on examples arising from stochastic control problems in financial engineering. We start by discussing more widely the difficulty in constructing compact and accurate approximations. The key obstacle is the requirement in the established convergence analysis of certain monotonicity properties of the schemes. We follow ideas in Oberman and Froese (2010) to introduce a suitable local modification of high order schemes, which are necessarily non-monotone, by “filtering” them with a monotone scheme. Thus, they can be proven to converge and still show an overall high order behaviour for smooth enough value functions. We give theoretical proofs of these claims and illustrate the behaviour with numerical tests. 

This talk is based on joint work with Olivier Bokanowski and Athena Picarelli.

Fri, 02 Dec 2016

10:00 - 11:00
L4

Modelling Aspects of Hotel Recommendation Systems

Christian Sommeregger & Wen Wong
(hotels.com (Expedia))
Abstract

Hotels.com is one of the world’s leading accommodation booking websites featuring an inventory of around 300.000 hotels and 100s of millions of users. A crucial part of our business is to act as an agent between these two sides of the market, thus reducing search costs and information asymmetries to enable our visitors to find the right hotel in the most efficient way.

From this point of view selling hotels is one large recommendation challenge: given a set of items and a set of observed choices/ratings, identify a user’s preference profile.  Over the last years this particular problem has been intensively studied by a strongly interdisciplinary field based on ideas from choice theory, linear algebra, statistics, computer science and machine learning. This pluralism is reflected in the broad array of techniques that are used in today’s industry applications, i.e. collaborative filtering, matrix factorization, graph-based algorithms, decision trees or generalized linear models.

The aim of this workshop is twofold.

Firstly we want to give some insight into the statistical modelling techniques and assumptions employed at hotels.com, the practical challenges one has to face when designing a flexible and scalable recommender system and potential gaps between current research and real-world applications.

Secondly we are going to consider some more advanced questions around learning to rank from partial/incomplete feedback (1), dealing with selection-bias correction (2) and how econometrics and behavioral theory (eg Luce, Kahneman /Tversky) can be used to complement existing techniques (3).

 

Thu, 01 Dec 2016
17:30
L6

Pfaffian functions and elliptic functions

Gareth Jones
(Manchester)
Abstract

After giving some motivation, I will discuss work in progress with Harry Schmidt in which we give a pfaffian definition of Weierstrass elliptic functions, refining a result due to Macintyre. The complexity of our definition is bounded by an effective absolute constant. As an application we give an effective version of a result of Corvaja, Masser and Zannier on a sharpening of Manin-Mumford for non-split extensions of elliptic curves by the additive group. We also give a higher dimensional version of their result.

Thu, 01 Dec 2016

16:00 - 17:00
C2

Cohomology vs. Bounded Cohomology vs. Continuous Bounded Cohomology

Nicolaus Heuer
(University of Oxford)
Abstract

I will compare features of (classical) cohomology theory of groups to the rather exotic features of bounded (or continuous bounded) cohomology of groups.
Besides giving concrete examples I will state classical cohomological tools/features and see how (if) they survive in the case of bounded cohomology. Such will include the Mayer-Vietoris sequence, the transfer map, resolutions, classifying spaces, the universal coefficient theorem, the cup product, vanishing results, cohomological dimension and relation to extensions. 
Finally I will discuss their connection to each other via the comparison map.

Thu, 01 Dec 2016
16:00
L6

Random waves on the three-dimensional torus and correlations of spherical lattice points

Jacques Benatar
(King's College London)
Abstract

I will discuss some recent work, joint with R. Maffucci, concerning random Laplace eigenfunctions on the torus T^3=R^3/Z^3. Studying various statistics of these 'random waves' we will be confronted with an arithmetic question about linear relations among integer points on spheres.

Thu, 01 Dec 2016

16:00 - 17:30
L4

A Bayesian Methodology for Systemic Risk Assessment in Financial Networks

Luitgard A. M. Veraart
(LSE)
Abstract

We develop a Bayesian methodology for systemic risk assessment in financial networks such as the interbank market. Nodes represent participants in the network and weighted directed edges represent liabilities. Often, for every participant, only the total liabilities and total assets within this network are observable. However, systemic risk assessment needs the individual liabilities. We propose a model for the individual liabilities, which, following a Bayesian approach, we then condition on the observed total liabilities and assets and, potentially, on certain observed individual liabilities. We construct a Gibbs sampler to generate samples from this conditional distribution. These samples can be used in stress testing, giving probabilities for the outcomes of interest. As one application we derive default probabilities of individual banks and discuss their sensitivity with respect to prior information included to model the network. An R-package implementing the methodology is provided. (This is joint work with Axel Gandy (Imperial College London).)

Thu, 01 Dec 2016

16:00 - 17:00
L3

Asymptotic and Numerical Analysis of Carrier's Problem

Jon Chapman, Patrick Farrell
(University of Oxford)
Abstract

A computational and asymptotic analysis of the solutions of Carrier's problem  is presented. The computations reveal a striking and beautiful bifurcation diagram, with an infinite sequence of alternating pitchfork and fold bifurcations as the bifurcation parameter tends to zero. The method of Kuzmak is then applied to construct asymptotic solutions to the problem. This asymptotic approach explains the bifurcation structure identified numerically, and its predictions of the bifurcation points are in excellent agreement with the numerical results. The analysis yields a novel and complete taxonomy of the solutions to the problem, and demonstrates that a claim of Bender & Orszag is incorrect.

Thu, 01 Dec 2016

14:00 - 15:00
L5

A multilevel method for semidefinite programming relaxations of polynomial optimization problems with structured sparsity

Panos Parpas
(Imperial College)
Abstract

We propose a multilevel paradigm for the global optimisation of polynomials with sparse support. Such polynomials arise through the discretisation of PDEs, optimal control problems and in global optimization applications in general. We construct projection operators to relate the primal and dual variables of the SDP relaxation between lower and higher levels in the hierarchy, and theoretical results are proven to confirm their usefulness. Numerical results are presented for polynomial problems that show how these operators can be used in a hierarchical fashion to solve large scale problems with high accuracy.

Wed, 30 Nov 2016

16:00 - 17:00
C1

Geometric Invariant Theory and its Variation

Joshua Jackson
((Oxford University))
Abstract

A central tool in the construction of moduli spaces throughout algebraic geometry and beyond, geometric invariant theory (GIT) aims to sensibly answer the question, "How can we quotient an algebraic variety by a group action?" In this talk I will explain some basics of GIT and indicate how it can be used to build moduli spaces, before exploring one of its salient features: the non-canonicity of the quotient. I will show how the dependence on an additional parameter, a choice of so-called 'linearisation', leads to a rich 'wall crossing' picture, giving different interrelated models of the quotient. Time permitting, I will also speak about recent developments in non-reductive GIT, and joint work extending this dependence to the non-reductive setting.

Wed, 30 Nov 2016
15:00
L5

On Ring Learning with Errors and its uses in cryptography

Ana Costache
(University of Bristol)
Abstract

We introduce Learning with Errors and Ring Learning with Errors, two hard
lattice problems which are widely used for security of Homomorphic
Encryption schemes. Following a study we conducted comparing four such
schemes, the best scheme was the so-called BGV scheme, introduced by
Brakerski-Gentry-Vaikuntanathan in 2012. We present it as an example of a
ring-based homomorphic scheme, discussing its number theoretic
optimisations.

Wed, 30 Nov 2016
11:30
N3.12

Partition Identities, Q-series and the Quest for Rogers-Ramanujan Involutions

Adam Keilthy
(University of Oxford)
Abstract
This talk will introduce some arguably trivial results about partition identities, and generating functions for various counts of partitions. We will discuss methods of proving q-series identities via bijections of partitions, and proving partition identities via analytic methods. We will then comment on the Rogers-Ramanujan identities, their combinatorial interpretation, and their various methods of proof.
Tue, 29 Nov 2016

15:45 - 16:45
L4

On short time existence of Lagrangian mean curvature flow

Kim Moore
(Cambridge)
Abstract

One of the simplest, and yet largely still open, questions that one can ask about special Lagrangian submanifolds is whether they exist in a given homology class. One possible approach to this problem is to evolve a given Lagrangian submanifold under mean curvature flow in the hope of reaching a special Lagrangian submanifold in the same homology class. It is known, however, that even for 'nice' initial conditions the flow will develop singularities in finite time. 

I will talk about a joint work with Tom Begley, in which we prove a short time existence result for Lagrangian mean curvature flow, where the initial condition is a Lagrangian submanifold of complex Euclidean space with a certain type of singularity. This is a first step to proving, as conjectured by Joyce, that one may 'continue' Lagrangian mean curvature flow after the occurrence of singularities.

Tue, 29 Nov 2016
14:30
L3

Random plane waves and other classes of random functions

Dmitry Belyaev
(Mathematical Institute)
Abstract


There are several classes of random function that appear naturally in mathematical physics, probability, number theory, and other areas of mathematics. I will give a brief overview of some of these random functions and explain what they are and why they are important. Finally, I will explain how I use chebfun to study these functions.
 

Tue, 29 Nov 2016
14:30
L6

Decomposing the Complete r-Graph

Imre Leader
(University of Cambridge)
Abstract

The Graham-Pollak theorem states that to decompose the complete graph $K_n$ into complete bipartite subgraphs we need at least $n-1$ of them. What
happens for hypergraphs? In other words, suppose that we wish to decompose the complete $r$-graph on $n$ vertices into complete $r$-partite $r$-graphs; how many do we need?

In this talk we will report on recent progress on this problem. This is joint work with Luka Milicevic and Ta Sheng Tan.

Tue, 29 Nov 2016
14:00
L3

Stochastic discrete Hamiltonian variational integrators

Tom Tyranowski
(Imperial College)
Abstract

Stochastic Hamiltonian systems with multiplicative noise are a mathematical model for many physical systems with uncertainty. For example, they can be used to describe synchrotron oscillations of a particle in a storage ring. Just like their deterministic counterparts, stochastic Hamiltonian systems possess several important geometric features; for instance, their phase flows preserve the canonical symplectic form. When simulating these systems numerically, it is therefore advisable that the numerical scheme also preserves such geometric structures. In this talk we propose a variational principle for stochastic Hamiltonian systems and use it to construct stochastic Galerkin variational integrators. We show that such integrators are indeed symplectic, preserve integrals of motion related to Lie group symmetries, demonstrate superior long-time energy behavior compared to nonsymplectic methods, and they include stochastic symplectic Runge-Kutta methods as a special case. We also analyze their convergence properties and present the results of several numerical experiments. 

Tue, 29 Nov 2016

12:45 - 13:30
C5

Community Detection in Annotated Bipartite Networks

Roxana Pamfil
(University of Oxford)
Abstract

A successful programme of personalised discounts and recommendations relies on identifying products that customers want, based both on items bought in the past and on relevant products that the customers have not yet purchased. Using basket-level grocery shopping data, we aim to use clustering ("community detection") techniques to identify groups of shoppers with similar preferences, along with the corresponding products that they purchase, in order to design better recommendation systems.


Stochastic block models (SBMs) are an increasingly popular class of methods for community detection. In this talk, I will expand on some work done by Newman and Clauset [1] that uses a modified SBM for community detection in annotated networks. In these networks, additional information in the form of node metadata is used to improve the quality of the inferred community structure. The method can be extended to bipartite networks, which contain two types of nodes and edges only between nodes of different types. I will show some results obtained from applying this method to a bipartite network of customers and products. Finally, I will discuss some desirable extensions to this method such as incorporating edge weights and assessing the relationship between metadata and network structure in a statistically robust way.


[1] Structure and inference in annotated networks, MEJ Newman and A Clauset, Nature Communications 7, 11863 (2016).


Note: This talk will cover similar topics to my presentation in the InFoMM group meeting on Friday, November 25 but it won't be exactly the same. I will focus more on the mathematical details for my JAMS talk.
 

Tue, 29 Nov 2016

12:00 - 13:15
L4

Finite BMS transformations

Glenn Barnich
(ULB Brussells)
Abstract

After a brief review of holographic features of general relativity in 3 and 4 dimensions, I will show how to derive the transformation laws of the Bondi mass and angular momentum aspects under finite supertranslations, superrotations and complex Weyl rescalings.