Tue, 22 Nov 2016

15:45 - 16:45
L4

The Cohomological McKay Correspondence and Symplectic Cohomology

Mark McLean
(Stony Brook)
Abstract

Suppose that we have a finite quotient singularity $\mathbb C^n/G$ admitting a crepant resolution $Y$ (i.e. a resolution with $c_1 = 0$). The cohomological McKay correspondence says that the cohomology of $Y$ has a basis given by irreducible representations of $G$ (or conjugacy classes of $G$). Such a result was proven by Batyrev when the coefficient field $\mathbb F$ of the cohomology group is $\mathbb Q$. We give an alternative proof of the cohomological McKay correspondence in some cases by computing symplectic cohomology+ of $Y$ in two different ways. This proof also extends the result to all fields $\mathbb F$ whose characteristic does not divide $|G|$ and it gives us the corresponding basis of conjugacy classes in $H^*(Y)$. We conjecture that there is an extension to certain non-crepant resolutions. This is joint work with Alex Ritter.

Tue, 22 Nov 2016
14:30
L6

Colouring perfect graphs with a bounded number of colours

Paul Seymour
(Princeton University)
Abstract

It follows from the ellipsoid method and results of Grotschel, Lovasz and Schrijver that one can find an optimal colouring of a perfect graph in polynomial time. But no ''combinatorial'' algorithm to do this is known.

Here we give a combinatorial algorithm to do this in an n-vertex perfect graph in time O(n^{k+1}^2) where k is the clique number; so polynomial-time for fixed k. The algorithm depends on another result, a polynomial-time algorithm to find a ''balanced skew partition'' in a perfect graph if there is one.

Joint work with Maria Chudnovsky, Aurelie Lagoutte, and Sophie Spirkl.

Tue, 22 Nov 2016

12:00 - 13:00
L4

The number theory of superstring scattering amplitudes

Federico Zerbini
(Bonn)
Abstract

The Feynman diagram expansion of scattering amplitudes in perturbative superstring theory can be written (for closed strings) as a series of integrals over compactified moduli spaces of Riemann surfaces with marked points, indexed by the genus. Therefore in genus 0 it is reasonable to find, as it often happens in QFT computations, periods of M_{0,N}, which are known to be multiple zeta values. In this talk I want to report on recent advances in the genus 1 amplitude, which are related to the development of 2 different generalizations of classical multiple zeta values, namely elliptic multiple zeta values and conical sums.

Mon, 21 Nov 2016

16:00 - 17:00
L4

Variational integrals with linear growth

Miroslav Bulíček
(Charles University in Prague)
Abstract
We investigate the properties of certain elliptic systems leading, a priori, to solutions that belong to the space of Radon measures. We show that if the problem is equipped with a so-called Uhlenbeck structure, then the solution can in fact be understood as a standard weak solution, with one proviso: analogously as in the case of minimal surface equations, the attainment of the boundary value is penalized by a measure supported on (a subset of) the boundary, which, for the problems under consideration here, is the part of the boundary where a Neumann boundary condition is imposed. Finally, we will connect such elliptic systems with certain problems in elasticity theory – the limiting strain models.
Mon, 21 Nov 2016

15:45 - 16:45
L6

Configuration spaces of hard disks

Matthew Kahle
(Ohio State University)
Abstract

Configuration spaces of points in a manifold are well studied. Giving the points thickness has obvious physical meaning: the configuration space of non-overlapping particles is equivalent to the phase space, or energy landscape, of a hard spheres gas. But despite their intrinsic appeal, relatively little is known so far about the topology of such spaces. I will overview some recent work in this area, including a theorem with Yuliy Baryshnikov and Peter Bubenik that related the topology of these spaces to mechanically balanced, or jammed, configurations. I will also discuss work in progress with Robert MacPherson on hard disks in an infinite strip, where we understand the asymptotics of the Betti numbers as the number of disks tends to infinity. In the end, we see a kind of topological analogue of a liquid-gas phase transition.

Mon, 21 Nov 2016

15:45 - 16:45
L1

The Loewner energy of chords in simply connected domain

YILIN WANG
(ETH Zurich)
Abstract

We study some features of the energy of a deterministic chordal Loewner chain, which is defined as the Dirichlet energy of its driving function in a very directional way. Using an interpretation of this energy as a large deviation rate function for SLE_k as k goes to 0, we show that the energy of a deterministic curve from one boundary point A of a simply connected domain D to another boundary point B, is equal to the energy of its time-reversal i.e. of the same curve but viewed as going from B to A in D. In particular it measures how far does the chord differ from the hyperbolic geodesic. I will also discuss the relation between the energy of the curve with its regularity, some questions are still open. If time allows, I will present the Loewner energy for loops on the Riemann sphere, and open questions related to it as well.


 

Mon, 21 Nov 2016
14:15
L4

Minimal Log Discrepancy of Isolated Singularities and Reeb Orbits

Mark McLean
(Stony Brook)
Abstract

Let A be an affine variety inside a complex N dimensional vector space which either has an isolated singularity at the origin or is smooth at the origin. The intersection of A with a very small  sphere turns out to be a contact manifold called the link of A. Any contact manifold contactomorphic to the link of A is said to be Milnor fillable by A. If the first Chern class of our link is 0 then we can assign an invariant of our singularity called the minimal
discrepancy. We relate the minimal discrepancy with indices of certain Reeb orbits on our link. As a result we show that the standard contact
5 dimensional sphere has a unique Milnor filling up to normalization. This generalizes a Theorem by Mumford.

Mon, 21 Nov 2016

14:15 - 15:15
L1

Log-concave density estimation

RICHARD SAMWORTH
(Cambridge University)
Abstract

The class of log-concave densities on $\mathbb{R}^d$ is a very natural infinite-dimensional generalisation of the class of Gaussian densities.  I will show that it also allows the statistician to have the best of both the parametric and nonparametric worlds, in that one can obtain a fully automatic density estimator in the class (via maximum likelihood), with no tuning parameters to choose.  I'll discuss its computation, methodological consequences and theoretical properties, and in particular very recent results on minimax rates of convergence and adaptation.

 

Mon, 21 Nov 2016
12:45
L3

Calabi-Yau Moduli Spaces from 2D Gauge Theories

Hans Jockers
(Bonn)
Abstract

In this talk I will introduce methods to use 2d gauge theories as a means to describe Calabi-Yau varieties and their moduli spaces. As I review, this description furnishes a natural framework to predict derived equivalences between pairs of (sometimes even non-birational) Calabi-Yau varieties. A prominent example of this kind is realized by the Rødland non-birational pair of Calabi-Yau threefolds.
Using the 2d gauge theory description, I will propose further examples of derived equivalences among non-birational Calabi-Yau varieties.

 
Mon, 21 Nov 2016

11:00 - 12:00
C4

Motivic Eisenstein cohomology of Hilbert modular varieties

Guido Kings
(Universitaet Regensburg)
Abstract

Beilinson has given a motivic construction of the Eisenstein cohomology on modular curves. This makes it possible to define Eisenstein classes in Deligne-Beilinson, syntomic, and ´etale cohomology. These Eisenstein classes can be computed in terms of real analytic and p-adic Eisenstein series or modular units. The resulting explicit expressions allow to prove results on special values of classical and p-adic L-functions and lead to explicit reciprocity laws. Harder has more generally defined and studied the Eisenstein cohomology for Hilbert modular varieties by analytic methods. In this talk we will explain a motivic and in particular algebraic construction of Harder’s Eisenstein cohomology classes, which generalizes Beilinson’s result. This opens the way to applications, similar as for modular curves, in the case of Hilbert modular varieties.

Fri, 18 Nov 2016

16:00 - 17:00
L1

North meets South Colloquium

James Maynard + Thomas Woolley
(Mathematical Institute, Oxford)
Abstract

Approximate prime numbers -- James Maynard

I will talk about the idea of an 'almost prime' number, and how this can be used to make progress on some famous problems about the primes themselves.

Mathematical biology: An early career retrospective -- Thomas Woolley

No image

Since 2008 Thomas has focused his attention to the application of mathematical techniques to biological problems. Through numerous fruitful collaborations he has been extremely fortunate to work alongside some amazing researchers. But what has he done in the last 8 years? What lessons has he learnt? What knowledge has he produced?

This talk will encompass a brief overview of a range of applications, from animal skin patterns to cellular mechanics, via zombies and Godzilla.

Fri, 18 Nov 2016
14:15
C3

Analogue models of hydraulic fracturing

Finn Box
(University of Oxford)
Abstract

The spreading of a viscous fluid in between a rigid, horizontal substrate and an overlying elastic sheet is presented as a simplified model of the hydraulic fracturing process. In particular, the talk will focus on the case of a permeable substrate for which leak-off arrests the propagation of the fluid and permits the development of a steady state. The different regimes of  gravitationally-driven and elastically-driven flow will be explored, as will the cases of a stiff and flexible sheet, before a discussion of the influence that particles included in the fluid have on the fracture propagation. 

Fri, 18 Nov 2016

13:00 - 14:00
L6

Second Year DPhil Student Talks

Zhenru Wang and Vadim Kaushansky
(Mathematical Institute)
Abstract

Zhenru Wang
Title: Multi-Index Monte Carlo Estimators for a Class of Zakai SPDEs
Abstract:   
We first propose a space-time Multi-Index Monte Carlo (MIMC) estimator for a one-dimensional parabolic SPDE of Zakai type. We compare the computational cost required for a prescribed accuracy with the Multilevel Monte Carlo (MLMC) method of Giles and Reisinger (2012). Then we extend the estimator to a two-dimensional variant of SPDE. The theoretical analysis shows the benefit of using MIMC in high dimensional problems over MLMC methods. Numerical tests confirm these finding empirically.


Vadim Kaushansky
Title: An extended structural default model with jump risk
Abstact:
We consider a structural default model in an interconnected banking network as in Itkin and Lipton (2015), where there are mutual obligations between each pair of banks. We analyse the model numerically for the case of two banks with jumps in their asset value processes. Specifically, we develop a finite difference method for the resulting two-dimensional partial integro-differential equation, and study its stability and consistency. By applying this method, we compute joint and marginal survival probabilities, as well as prices of credit default swaps (CDS) and first-to-default swaps (FTD), Credit and Debt Value Adjustments (CVA and DVA).

 

Thu, 17 Nov 2016
17:30
L6

Some remarks on duality

Robin Knight
((Oxford University))
Abstract

One of many overlaps between logic and topology is duality: Stone duality links Boolean algebras with zero-dimensional compact Hausdorff spaces, and gives a useful topological way of describing certain phenomena in first order logic; and there are generalisations that allow one to study infinitary logics also. We will look at a couple of ways in which this duality theory is useful.'

Thu, 17 Nov 2016
16:00
L6

Correlations of multiplicative functions

Oleksiy Klurman
(University College London)
Abstract


We develop the asymptotic formulas for correlations  
\[ \sum_{n\le x}f_1(P_1(n))f_2(P_2(n))\cdot \dots \cdot f_m(P_m(n))\]

where $f_1,\dots,f_m$ are bounded ``pretentious" multiplicative functions, under certain natural hypotheses. We then deduce several desirable consequences: first, we characterize all multiplicative functions $f:\mathbb{N}\to\{-1,+1\}$ with bounded partial sums. This answers a question of Erd{\"o}s from $1957$ in the form conjectured by Tao. Second, we show that if the average of the first divided difference of multiplicative function is zero, then either $f(n)=n^s$ for $\operatorname{Re}(s)<1$ or $|f(n)|$ is small on average. This settles an old conjecture of K\'atai. Third, we discuss applications to the study of sign patterns of $(f(n),f(n+1),f(n+2))$ and $(f(n),f(n+1),f(n+2),f(n+3))$ where $f:\mathbb{N}\to \{-1,1\}$ is a given multiplicative function. If time permits, we discuss multidimensional version of some of the results mentioned above.
 

Thu, 17 Nov 2016

16:00 - 17:30
L4

The existence of densities of BSDEs

Daniel Schwarz
(UCL)
Abstract

We introduce sufficient conditions for the solution of a multi-dimensional, Markovian BSDE to have a density. We show that a system of BSDEs possesses a density if its corresponding semilinear PDE exhibits certain regularity properties, which we verify in the case of several examples.

Thu, 17 Nov 2016

16:00 - 17:00
L3

Modelling Anti-Surfactants and Thixotropic Lubrication

Stephen Wilson
(University of Strathclyde)
Abstract

In the first part of the talk, I will describe a fluid-dynamical model for a "anti-surfactant" solution (such as salt dissolved in water) whose surface tension is an increasing function of bulk solvent concentration. In particular, I will show that this model is consistent with the standard model for surfactants, and predicts a novel instability for anti-surfactants not present for surfactants. Some further details are given in the recent paper by Conn et al. Phys. Rev. E 93 043121 (2016).

 

In the second part of the talk, I will formulate and analyse the governing equations for the flow of a thixotropic or antithixotropic fluid in a slowly varying channel. These equations are equivalent to the equations of classical lubrication theory for a Newtonian fluid, but incorporate the evolving microstructure of the fluid, described in terms of a scalar structure parameter. If time permits, I will seek draw some conclusions relevant to thixotropic flow in porous media. Some further details are given in the forthcoming paper by Pritchard et al. to appear in J Non-Newt. Fluid Mech (2016).

Thu, 17 Nov 2016

14:00 - 15:00
L5

Second order approximation of the MRI signal for single shot parameter assessment

Prof. Rodrigo Platte
(Arizona State University)
Abstract

Most current methods of Magnetic Resonance Imaging (MRI) reconstruction interpret raw signal values as samples of the Fourier transform of the object. Although this is computationally convenient, it neglects relaxation and off–resonance evolution in phase, both of which can occur to significant extent during a typical MRI signal. A more accurate model, known as Parameter Assessment by Recovery from Signal Encoding (PARSE), takes the time evolution of the signal into consideration. This model uses three parameters that depend on tissue properties: transverse magnetization, signal decay rate, and frequency offset from resonance. Two difficulties in recovering an image using this model are the low SNR for long acquisition times in single-shot MRI, and the nonlinear dependence of the signal on the decay rate and frequency offset. In this talk, we address the latter issue by using a second order approximation of the original PARSE model. The linearized model can be solved using convex optimization augmented with well-stablished regularization techniques such as total variation. The sensitivity of the parameters to noise and computational challenges associated with this approximation will be discussed.

Thu, 17 Nov 2016
12:00
L5

Green’s function for elliptic systems: Existence and stochastic bounds

Arianna Giunti
(Max Planck Institute Leipzig)
Abstract
We study the Green function G associated to the operator −∇ · a∇ in Rd, when a = a(x) is a (measurable) bounded and uniformly elliptic coefficient field. An example of De Giorgi implies that, in the case of systems, the existence of a Green’s function is not ensured by such a wide class of coefficient fields a. We give a more general definition of G and show that for every bounded and uniformly elliptic a, such G exists and is unique. In addition, given a stationary ensemble $\langle\cdot\rangle$ on a, we prove optimal decay estimates for $\langle|G|\rangle $ and $\langle|∇G|\rangle$. Under assumptions of quantification of ergodicity for $\langle\cdot\rangle$, we extend these bounds also to higher moments in probability. These results play an important role in the context of quantitative stochastic homogenization for −∇ · a∇. This talk is based on joint works with Peter Bella, Joseph Conlon and Felix Otto.