Thu, 30 Jun 2016

17:00 - 18:00
L1

Alison Etheridge - Modelling genes: the backwards and forwards of mathematical population genetics

Alison Etheridge
((Oxford University))
Abstract

How can we explain the patterns of genetic variation in the world around us? The genetic composition of a population can be changed by natural selection, mutation, mating, and other genetic, ecological and evolutionary mechanisms. How do they interact with one another, and what was their relative importance in shaping the patterns we see today

Whereas the pioneers of the field could only observe genetic variation indirectly, by looking at traits of individuals in a population, researchers today have direct access to DNA sequences. But making sense of this wealth of data presents a major scientific challenge and mathematical models play a decisive role. This lecture will distil our understanding into workable models and explore the remarkable power of simple mathematical caricatures in interrogating modern genetic data.

To book please email @email

Mon, 20 Jun 2016
16:00
L1

Formal Moduli Problems

Jacob Lurie (Hardy Lecture Tour)
(Harvard University)
Abstract

Let X be a complex algebraic variety containing a point x. One of the central ideas of deformation theory is that the local structure of X near the point x can be encoded by a differential graded Lie algebra. In this talk, Jacob Lurie will explain this idea and discuss some generalizations to more exotic contexts.

Mon, 20 Jun 2016
16:00
L1

Hardy Lecture: Formal Moduli Problems

Jacob Lurie
(Harvard)
Abstract

Let X be a complex algebraic variety containing a point x. One of the central ideas of deformation theory is that the local structure of X near the point x can be encoded by a differential graded Lie algebra. In this talk, Jacob Lurie will explain this idea and discuss some generalizations to more exotic contexts.

Fri, 17 Jun 2016

16:00 - 17:00
L1

Conjugacy classes and group representations

David Vogan
(MIT)
Abstract

One of the big ideas in linear algebra is {\em eigenvalues}. Most matrices become in some basis {\em diagonal} matrices; so a lot of information about the matrix (which is specified by $n^2$ matrix entries) is encoded by by just $n$ eigenvalues. The fact that lots of different matrices can have the same eigenvalues reflects the fact that matrix multiplication is not commutative.

I'll look at how to make these vague statements (``lots of different matrices...") more precise; how to extend them from matrices to abstract symmetry groups; and how to relate abstract symmetry groups to matrices.

Fri, 17 Jun 2016
14:15
C3

The Missing Meteorites of Antarctica

Geoff Evatt
(University of Manchester)
Abstract

The vast majority of the World's documented meteorite specimens have been collected from Antarctica. This is due to Antarctica’s ice dynamics, which allows for the significant concentration of meteorites onto ice surfaces known as Meteorite Stranding Zones. However, meteorite collection data shows a significant anomaly exists: the proportion of iron-based meteorites are under-represented compared to those found in the rest of the World. Here I explain that englacial solar warming provides a plausible explanation for this shortfall: as meteorites are transported up towards the surface of the ice they become exposed to increasing amounts of solar radiation, meaning it is possible for meteorites with a high-enough thermal conductivity (such as iron) to reach a depth at which they melt their underlying ice and sink back downwards, offsetting the upwards transportation. An enticing consequence of this mechanism is that a sparse layer of  meteorites lies just beneath the surface of these Meteorite Stranding Zones...

Fri, 17 Jun 2016

13:00 - 14:30
L3

Inferring the order of events

Harald Oberhauser
(Oxford University SAG)
Abstract

Mining massive amounts of sequentially ordered data and inferring structural properties is nowadays a standard task (in finance, etc). I will present some results that combine and extend ideas from rough paths and machine learning that allow to give a general non-parametric approach with strong theoretical guarantees. Joint works with F. Kiraly and T. Lyons.

Fri, 17 Jun 2016

11:00 - 12:00
C2

Period rings II

Constantin Ardakov
(Oxford)
Abstract

Continuation of the last talk.

Fri, 17 Jun 2016

10:00 - 11:00
L5

Reconstructing effective signalling networks in T cells

Omer Dushek
(Sir William Dunn School of Pathology)
Abstract

T cells are important white blood cells that continually circulate in the body in search of the molecular signatures ('antigens') of infection and cancer. We (and many other labs) are trying to construct models of the T cell signalling network that can be used to predict how ligand binding (at the surface of the cell) controls gene express (in the nucleus). To do this, we stimulate T cells with various ligands (input) and measure products of gene expression (output) and then try to determine which model must be invoked to explain the data. The challenge that we face is finding 1) unique models and 2) scaling the method to many different input and outputs.

Fri, 17 Jun 2016
10:00
N3.12

Multidimensional persistent homology

Nina Otter
Abstract

The computation of multidimensional persistent homology is one of the major open problems in topological data analysis. 

One can define r-dimensional persistent homology to be a functor from the poset category N^r, where N is the poset of natural numbers, to the category of modules over a commutative ring with identity. While 1-dimensional persistent homology is theoretically well-understood and has been successfully applied to many real-world problems, the theory of r-dimensional persistent homology is much harder, as it amounts to understanding representations of quivers of wild type. 

In this talk I will introduce persistent homology, give some motivation for how it is related to the study of data, and present recent results related to the classification of multidimensional persistent homology.

Thu, 16 Jun 2016
17:30
L6

Pseudofinite dimensions and simplicity

Dario Garcia
(Leeds)
Abstract

The concept of pseudofinite dimension for ultraproducts of finite structures was introduced by Hrushovski and Wagner. In this talk, I will present joint work with D. Macpherson and C. Steinhorn in which we explored conditions on the (fine) pseudofinite dimension that guarantee simplicity or supersimplicity of the underlying theory of an ultraproduct of finite structures, as well as a characterization of forking in terms of droping of the pseudofinite dimension. Also, under a suitable assumption, it can be shown that a measure-theoretic condition is equivalent to loc

Thu, 16 Jun 2016
16:00
L6

Gaps Between Smooth Numbers

Roger Heath-Brown
(Oxford University)
Abstract

Let $a_1, \cdots, a_N$ be the sequence of y-smooth numbers up to x (i.e. composed only of primes up to y). When y is a small power of x, what can one say about the size of the gaps $a_{j+1}-a_j$? In particular, what about

$$\sum_1^N (a_{j+1}-a_j)^2?$$

Thu, 16 Jun 2016

16:00 - 17:30
L5

Mathematical Aspects of Systemic Risk

Hans Föllmer
(Humboldt Universität zu Berlin)
Abstract

We focus on the mathematical structure of systemic risk measures as proposed by Chen, Iyengar, and Moallemi (2013). In order to clarify the interplay between local and global risk assessment, we study the local specification of a systemic risk measure by a consistent family of conditional risk measures for smaller subsystems, and we discuss the appearance of phase transitions at the global level. This extends the analysis of spatial risk measures in Föllmer and Klϋppelberg (2015).

Thu, 16 Jun 2016

16:00 - 17:00
L3

Sensing human behaviour with online data

Suzy Moat
(Warwick)
Abstract

Our everyday usage of the Internet generates huge amounts of data on how humans collect and exchange information worldwide. In this talk, I will outline recent work in which we investigate whether data from sources such as Google, Wikipedia and Flickr can be used to gain new insight into real world human behaviour. I will provide case studies from a range of domains, including disease detection, crowd size estimation, and evaluating whether the beauty of the environment we live in might affect our health.

Thu, 16 Jun 2016

14:00 - 15:00
L5

Input-independent, optimal interpolatory model reduction: Moving from linear to nonlinear dynamics

Prof. Serkan Gugercin
(Virginia Tech)
Abstract

For linear dynamical systems, model reduction has achieved great success. In the case of linear dynamics,  we know how to construct, at a modest cost, (locally) optimalinput-independent reduced models; that is, reduced models that are uniformly good over all inputs having bounded energy. In addition, in some cases we can achieve this goal using only input/output data without a priori knowledge of internal  dynamics.  Even though model reduction has been successfully and effectively applied to nonlinear dynamical systems as well, in this setting,  bot the reduction process and the reduced models are input dependent and the high fidelity of the resulting approximation is generically restricted to the training input/data. In this talk, we will offer remedies to this situation.

 
First, we will  review  model reduction for linear systems by using rational interpolation as the underlying framework. The concept of transfer function will prove fundamental in this setting. Then, we will show how rational interpolation and transfer function concepts can be extended to nonlinear dynamics, specifically to bilinear systems and quadratic-in-state systems, allowing us to construct input-independent reduced models in this setting as well. Several numerical examples will be illustrated to support the discussion.
Thu, 16 Jun 2016
12:00
L6

Minimal hypersurfaces with bounded index

Ben Sharp
(University of Pisa)
Abstract
An embedded hypersurface in a Riemannian manifold is said to be minimal if it is a critical point with respect to the induced area. The index of a minimal hypersurface (roughly speaking) tells us how many ways one can locally deform the surface to decrease area (so that strict local area-minimisers have index zero). We will give an overview of recent works linking the index, topology and geometry of closed and embedded minimal hypersurfaces. The talk will involve separate joint works with Reto Buzano, Lucas Ambrozio and Alessandro Carlotto. 
Thu, 16 Jun 2016

11:00 - 15:45
C3

'Around quantum j-mappings (model theory and sheaves)'.

Andres Villaveces
(Bogota)
Abstract
Abstract: finding a "non-commutative limit" of the j-invariant (to real numbers, in a way that captures reasonably well the connection with extensions of number fields) has prompted several approaches (Manin-Marcolli, Castaño-Gendron). I will describe one of these approaches in a brief way, and I will make some connections to the model theory of sheaves.
Wed, 15 Jun 2016

11:30 - 12:30
N3.12

2x2 Matrices

Giles Gardam
(Oxford)
Abstract

We will explore the many guises under which groups of 2x2 matrices appear, such as isometries of the hyperbolic plane, mapping class groups and the modular group. Along the way we will learn some interesting and perhaps surprising facts.

Tue, 14 Jun 2016
16:30
L6

Counting Designs

Peter Keevash
(Oxford)
Abstract

A Steiner Triple System on a set X is a collection T of 3-element subsets of X such that every pair of elements of X is contained in exactly one of the triples in T. An example considered by Plücker in 1835 is the affine plane of order three, which consists of 12 triples on a set of 9 points. Plücker observed that a necessary condition for the existence of a Steiner Triple System on a set with n elements is that n be congruent to 1 or 3 mod 6. In 1846, Kirkman showed that this necessary condition is also sufficient. In 1974, Wilson conjectured an approximate formula for the number of such systems. We will outline a proof of this
conjecture, and a more general estimate for the number of Steiner systems. Our main tool is the technique of Randomised Algebraic Construction, which
we introduced to resolve a question of Steiner from 1853 on the existence of designs.

Tue, 14 Jun 2016

15:45 - 16:45
L4

Symplectic homology for cobordisms

Alexandru Oancea
(Jussieu)
Abstract

I will present a definition of symplectic homology groups for pairs of Liouville cobordisms with fillings, and explain how these fit into a formalism of homology theory similar to that of Eilenberg and Steenrod. This construction allows to understand form a unified point of view many structural results involving Floer homology groups, and yields new applications. Joint work with Kai Cieliebak.

Tue, 14 Jun 2016
15:00
L5

Exchanging a key: how hard can it be?

Cas Cremers
(University of Oxford)
Abstract
During the last thirty years, there have been many advances in the development of protocols for
authenticated key exchange. Although signature-based variants of Diffie-Hellman have been
known since the start of this development, dozens of new (two message) protocols are still proposed each
year. In this talk, we present some of the recent history of security definitions for Authenticated Key
Exchange, their many relatives, and discuss strengths and weaknesses. We motivate why there
has been little convergence in terms of protocols or security definitions. I will also present some of our 
recent work in this domain, including new stronger security definitions, and how to achieve them.