Mon, 15 Feb 2016

12:00 - 13:00
L5

Tops as Building Blocks for G2 Manifolds

Andreas Braun
(Oxford)
Abstract

A large number of examples of compact G2 manifolds, relevant to supersymmetric compactifications of M-Theory to four dimensions, can be constructed by forming a twisted connected sum of two appropriate building blocks times a circle. These building blocks, which are appropriate K3-fibred threefolds, are shown to have a natural and elegant construction in terms of tops, which parallels the construction of Calabi-Yau manifolds via reflexive polytopes.

Fri, 12 Feb 2016

16:00 - 17:00
L1

From particle systems to Fluid Mechanics

Isabelle Gallagher
(University of Paris-Diderot)
Abstract

The question of deriving Fluid Mechanics equations from deterministic
systems of interacting particles obeying Newton's laws, in the limit
when the number of particles goes to infinity, is a longstanding open
problem suggested by Hilbert in his 6th problem. In this talk we shall
present a few attempts in this program, by explaining how to derive some
linear models such as the Heat, acoustic and Stokes-Fourier equations.
This corresponds to joint works with Thierry Bodineau and Laure Saint
Raymond.

Fri, 12 Feb 2016
14:15
C3

Models of ice sheet dynamics and meltwater lubrication

Ian Hewitt
(University of Oxford)
Abstract

In this talk I will review mathematical models used to describe the dynamics of ice sheets, and highlight some current areas of active research.  Melting of glaciers and ice sheets causes an increase in global sea level, and provides many other feedbacks on isostatic adjustment, the dynamics of the ocean, and broader climate patterns.  The rate of melting has increased in recent years, but there is still considerable uncertainty over  why this is, and whether the increase will continue.  Central to these questions is understanding the physics of how the ice intereacts with the atmosphere, the ground on which it rests, and with the ocean at its margins.  I will given an overview of the fluid mechanical problems involved and the current state of mathematical/computational modelling.  I will focus particularly on the issue of changing lubrication due to water flowing underneath the ice, and discuss how we can use models to rationalise observations of ice speed-up and slow-down.

Thu, 11 Feb 2016

16:00 - 17:00
L3

Wave-particle coupling in fluid mechanics: bouncing droplets and flapping swimmers

Anand Oza
Abstract
Roughly a decade ago, Yves Couder and coworkers demonstrated that droplets walking on a vibrating fluid bath exhibit several features previously thought to be peculiar to the microscopic quantum realm, including single-particle diffraction, tunneling, quantized orbits, and wave-like statistics in a corral. We here develop an integro-differential trajectory equation for these walking droplets with a view to gaining insight into their subtle dynamics. We then rationalize the emergence of orbital quantization in a rotating frame by assessing the stability of the orbital solutions. In the limit of large vibrational forcing, the chaotic walker dynamics gives rise to a coherent statistical behavior with wave-like features.
 
I will then describe recent efforts to model the dynamics of interacting flapping swimmers. Our study is motivated by recent experiments using a one-dimensional array of wings in a water tank, in which the system adopts “schooling modes” characterized by specific spatial phase relationships between swimmers. We develop a discrete dynamical system that models the swimmers as airfoils shedding point vortices, and study the existence and stability of steady solutions. We expect that our model may be used to understand how schooling behavior is influenced by hydrodynamics in more general contexts.
 
Thu, 11 Feb 2016

14:00 - 15:00
L5

Tensor product approach for solution of multidimensional differential equations

Dr. Sergey Dolgov
(Bath University)
Abstract

Partial differential equations with more than three coordinates arise naturally if the model features certain kinds of stochasticity. Typical examples are the Schroedinger, Fokker-Planck and Master equations in quantum mechanics or cell biology, as well as quantification of uncertainty.
The principal difficulty of a straightforward numerical solution of such equations is the `curse of dimensionality': the storage cost of the discrete solution grows exponentially with the number of coordinates (dimensions).

One way to reduce the complexity is the low-rank separation of variables. One can see all discrete data (such as the solution) as multi-index arrays, or tensors. These large tensors are never stored directly.
We approximate them by a sum of products of smaller factors, each carrying only one of the original variables. I will present one of the simplest but powerful of such representations, the Tensor Train (TT) decomposition. The TT decomposition generalizes the approximation of a given matrix by a low-rank matrix to the tensor case. It was found that many interesting models allow such approximations with a significant reduction of storage demands.

A workhorse approach to computations with the TT and other tensor product decompositions is the alternating optimization of factors. The simple realization is however prone to convergence issues.
I will show some of the recent improvements that are indispensable for really many dimensions, or solution of linear systems with non-symmetric or indefinite matrices.

Thu, 11 Feb 2016
12:00
L6

Blow up by bubbling in critical parabolic problems

Manuel del Pino
(Universidad de Chile)
Abstract
We report some new results on construction of blowing up solutions by scalings of a finite energy entire steady states in two parabolic equations: the semilinear heat equation with critical nonlinearity and the 2d harmonic map flow into S2.
Wed, 10 Feb 2016
16:00
C3

Quasi-isometric rigidity and higher-rank symmetric spaces

Elia Fioravanti
(Oxford University)
Abstract

I will discuss a couple of techniques often useful to prove quasi-isometric rigidity results for isometry groups. I will then sketch how these were used by B. Kleiner and B. Leeb to obtain quasi-isometric rigidity for the class of fundamental groups of closed locally symmetric spaces of noncompact type.

Wed, 10 Feb 2016
15:00
L4

Cryptographic Vulnerability Disclosure: The Good, The Bad, and The Ugly

Kenny Paterson
(Royal Holloway, University of London)
Abstract

In this talk, I'll discuss some personal experiences - good, bad, and
ugly - of disclosing vulnerabilities in a range of different cryptographic
standards and implementations. I'll try to draw some general lessons about
what works well and what does not.

Tue, 09 Feb 2016

15:45 - 16:45
L4

A new duality for categories of B-branes

Ed Segal
(Inperial College London)
Abstract

Given an Artin stack $X$, there is growing evidence that there should be an associated `category of B-branes', which is some subcategory of the derived category of coherent sheaves on $X$. The simplest case is when $X$ is just a vector space modulo a linear action of a reductive group, or `gauged linear sigma model' in physicists' terminology. In this case we know some examples of what the category B-branes should be. Hori has conjectured a physical duality between certain families of GLSMs, which would imply that their B-brane categories are equivalent. We prove this equivalence of categories. As an application, we construct Homological Projective Duality for (non-commutative resolutions of) Pfaffian varieties.

Tue, 09 Feb 2016
14:30
L6

The Chromatic Number of Dense Random Graphs

Annika Heckel
(Oxford University)
Abstract

The chromatic number of the Erdős–Rényi random graph G(n,p) has been an intensely studied subject since at least the 1970s. A celebrated breakthrough by Bollobás in 1987 first established the asymptotic value of the chromatic number of G(n,1/2), and a considerable amount of effort has since been spent on refining Bollobás' approach, resulting in increasingly accurate bounds. Despite this, up until now there has been a gap of size O(1) in the denominator between the best known upper and lower bounds for the chromatic number of dense random graphs G(n,p) where p is constant. In contrast, much more is known in the sparse case.

In this talk, new upper and lower bounds for the chromatic number of G(n,p) where p is constant will be presented which match each other up to a term of size o(1) in the denominator. In particular, they narrow down the optimal colouring rate, defined as the average colour class size in a colouring with the minimum number of colours, to an interval of length o(1). These bounds were obtained through a careful application of the second moment method rather than a variant of Bollobás' method. Somewhat surprisingly, the behaviour of the chromatic number changes around p=1-1/e^2, with a different limiting effect being dominant below and above this value.

Tue, 09 Feb 2016

14:00 - 15:00
L4

Virtual signed Euler characteristics and the Vafa-Witten equations

Richard Thomas
(Imperial College London)
Abstract

I will describe 5 definitions of Euler characteristic for a space with perfect obstruction theory (i.e. a well-behaved moduli space), and their inter-relations. This is joint work with Yunfeng Jiang. Then I will describe work of Yuuji Tanaka on how to this can be used to give two possible definitions of Vafa-Witten invariants of projective surfaces in the stable=semistable case.

Tue, 09 Feb 2016

14:00 - 14:30
L5

Regularization methods - varying the power, the smoothness and the accuracy

Coralia Cartis
(University of Oxford)
Abstract

Adaptive cubic regularization methods have recently emerged as a credible alternative to line search and trust-region for smooth nonconvex optimization, with optimal complexity amongst second-order methods. Here we consider a general class of adaptive regularization methods, that use first- or higher-order local Taylor models of the objective regularized by a(ny) power of the step size. We investigate the worst-case complexity/global rate of convergence of these algorithms, in the presence of varying (unknown) smoothness of the objective. We find that some methods automatically adapt their complexity to the degree of smoothness of the objective; while others take advantage of the power of the regularization step to satisfy increasingly better bounds with the order of the models. This work is joint with Nick Gould (RAL) and Philippe Toint (Namur).

Tue, 09 Feb 2016

12:00 - 13:15
L4

Single Valued Elliptic Multizetas and String theory

Pierre Vanhove
(IHES & Cambridge)
Abstract

Modular invariance is ubiquitous in string theory.   This is the symmetry of genus-one amplitudes, as well as the non-perturbative duality symmetry of type IIb superstring in ten dimensions.  The alpha’ expansion of string theory amplitudes leads to interesting new modular forms. In this talk we will describe the properties of the new modular forms. We will explain that the modular forms entering the alpha’ expansion of genus one type-II superstring amplitude are naturally expressed as particular values of single valued elliptic multiple polylogarithm.  They are natural modular generalization of the single valued elliptic multiple-zeta introduced by Francis Brown. 

Mon, 08 Feb 2016
16:30
C1

The degree zero part of the motivic polylogarithm and the Deligne-Beilinson cohomology

Danny Scarponi
(Univ.Toulouse)
Abstract

Last year, G. Kings and D. Rossler related the degree zero part of the polylogarithm
on abelian schemes pol^0 with another object previously defined by V. Maillot and D.
Rossler. More precisely, they proved that the canonical class of currents constructed
by Maillot and Rossler provides us with the realization of pol^0 in analytic Deligne
cohomology.
I will show that, adding some properness conditions, it is possible to give a
refinement of Kings and Rossler’s result involving Deligne-Beilinson cohomology
instead of analytic Deligne cohomology.