13:00
13:00
11:30
Quadratic differentials as stability conditions
Abstract
I will explain how moduli spaces of quadratic differentials on Riemann surfaces can be interpreted as spaces of stability conditions for certain 3-Calabi-Yau triangulated categories. These categories are defined via quivers with potentials, but can also be interpreted as Fukaya categories. This work (joint with Ivan Smith) was inspired by the papers of Gaiotto, Moore and Neitzke, but connections with hyperkahler metrics, Fock-Goncharov coordinates etc. will not be covered in this talk.
Lion and Man: Can both win?
Abstract
Rado introduced the following `lion and man' game in the 1930's: two players (the lion and the man) are in the closed unit disc and they can run at the same speed. The lion would like to catch the man and the man would like to avoid being captured.
This game has a chequered history with several false `winning strategies' before Besicovitch finally gave a genuine winning strategy.
We ask the surprising question: can both players win?
13:30
Limit Order Books
Abstract
Determining the price at which to conduct a trade is an age-old problem. The first (albeit primitive) pricing mechanism dates back to the Neolithic era, when people met in physical proximity in order to agree upon mutually beneficial exchanges of goods and services, and over time increasingly complex mechanisms have played a role in determining prices. In the highly competitive and relentlessly fast-paced markets of today’s financial world, it is the limit order book that matches buyers and sellers to trade at an agreed price in more than half of the world’s markets. In this talk I will describe the limit order book trade-matching mechanism, and explain how the extra flexibility it provides has vastly impacted the problem of how a market participant should optimally behave in a given set of circumstances.
12:00
Correlation functions, Wilson loops, and local operators in twistor space
Abstract
Abstract:
Motivated by the correlation functions-Wilson loop correspondence in
maximally supersymmetric Yang-Mills theory, we will investigate a
conjecture of Alday, Buchbinder, and Tseytlin regarding correlators of
null polygonal Wilson loops with local operators in general position.
By translating the problem to twistor space, we can show that such
correlators arise by taking null limits of correlation functions in the
gauge theory, thereby providing a proof for the conjecture.
Additionally, twistor methods allow us to derive a recursive formula for
computing these correlators, akin to the BCFW recursion for scattering
amplitudes.
11:00
Investigation of stochastic closures, stochastic computation and the surface geostrophic equations.
Self-similar solutions with fat tails for Smoluchowski's coagulation equation
Free and linear representations of Out(F_n)
Abstract
For a fixed n we will investigate homomorphisms Out(F_n) to
Out(F_m) (i.e. free representations) and Out(F_n) to
GL_m(K) (i.e. K-linear representations). We will
completely classify both kinds of representations (at least for suitable
fields K) for a range of values $m$.
Title: A new approximation algorithm to solve the filtering problem combining Cubature and TBBA
Abstract
Abstract: In this talk we will introduce a new particle approximation scheme to solve the stochastic filtering problem. This new scheme makes use of the Kusuoka-Lyons-Victoir (KLV) method to approximate the dynamics of the signal. In order to control the computational cost, a partial sampling procedure based on the tree based branching algorithm (TBBA) is performed. The novelty of the method lies in the fact that the weights used in the TBBA are computed combining the cubature weights and the filtering weights. In this way, we can avoid the sample degeneracy problem inherent to particle filters. We will also present some simulations showing the performance of the method.
“On-diagonal oscillation of the heat kernels on p.c.f. self-similar fractals”
Abstract
It is a general belief that the heat kernels on fractals should exhibit highly oscillatory behaviors as opposed to the classical case of Riemannian manifolds.
For example, on a class of finitely ramified fractals, called (affine) nested fractals, a canonical ``Brownian motion" has been constructed and its transition density (heat kernel) $p_{t}(x,y)$ satisfies $c_{1} \leq t^{d_{s}/2} p_{t}(x,x) \leq c_{2}$ for $t \leq 1$ for any point $x$ of the fractal; here $d_{s}$ is the so-called spectral dimension. Then it is natural to ask whether the limit of this quantity as $t$ goes to 0 exists or not, and it has been conjectured NOT to exist by many people.
In this talk, I will present partial affirmative answers to this conjecture. First, for a general (affine) nested fractal, the non-existence of the limit is shown to be true for a ``generic" (in particular, almost every) point. Secondly, the same is shown to be valid for ANY point of the fractal in the particular cases of the $d$-dimensional standard Sierpinski gasket with $d\geq 2$ and of the $N$-polygasket with $N\geq 3$ odd, e.g. the pentagasket ($N=5$) and the heptagasket ($N=7$).
14:15
M-theory dualities and generalised geometry
Abstract
In this talk we will review M-theory dualities and recent attempts to make these dualities manifest in eleven-dimensional supergravity. We will review the work of Berman and Perry and then outline a prescription, called non-linear realisation, for making larger duality symmetries manifest. Finally, we will explain how the local symmetries are described by generalised geometry, which leads to a duality-covariant constraint that allows one to reduce from generalised space to physical space.
Image Segmentation: Diffusive or Sharp Interfaces and Some Global Minimization Techniques
Abstract
Image segmentation and a number of other problems from image processing and computer vision can be regarded
as interface problems. Recently, diffusive and sharp interface techniques have been used for these problems.
In this talk, we will first briefly explain these models and compare the advantages and disadvantages of these models. Numerically, these models can be solved through some PDEs. In the end, we will show some recent results on how to use graph cut to solve these interface problems. Moreover, the global minimizer can be guaranteed even the problem is nonconex and nonlinear. The use of max-flow in a network setting and also in an infinite dimensional setting will be explained.
Implicit vs explicit schemes for non-linear PDEs and illustrations in Finance and optimal control.
Abstract
We will first motivate and review some implicit schemes that arises from the discretization of non linear PDEs in finance or in optimal control problems - when using finite differences methods or finite element methods.
For the american option problem, we are led to compute the solution of a discrete obstacle problem, and will give some results for the convergence of nonsmooth Newton's method for solving such problems.
Implicit schemes are interesting for their stability properties, however they can be too costly in practice.
We will then present some novel schemes and ideas, based on the semi-lagrangian approach and on discontinuous galerkin methods, trying to be as much explicit as possible in order to gain practical efficiency.
The impact of phenotypic switching on glioblastoma growth and invasion'
Algebraic theories and locally presentable categories
Abstract
Algebraic theories, locally presentable categories and their application to type theories. The seminar will take place in Lecture Theatre A of the Department of Computer Science.
Spectral Marine Energy Converter
Abstract
A SMEC device is an array of aerofoil-shaped parallel hollow vanes forming linear venturis, perforated at the narrowest point where the vanes most nearly touch. When placed across a river or tidal flow, the water accelerates through the venturis between each pair of adjacent vanes and its pressure drops in accordance with Bernoulli’s Theorem. The low pressure zone draws a secondary flow out through the perforations in the adjacent hollow vanes which are all connected to a manifold at one end. The secondary flow enters the manifold through an axial flow turbine.
SMEC creates a small upstream head uplift of, say 1.5m – 2.5m, thereby converting some of the primary flow’s kinetic energy into potential energy. This head difference across the device drives around 80% of the flow between the vanes which can be seen to act as a no-moving-parts venturi pump, lowering the head on the back face of the turbine through which the other 20% of the flow is drawn. The head drop across this turbine, however, is amplified from, say, 2m up to, say, 8m. So SMEC is analogous to a step-up transformer, converting a high-volume low-pressure flow to a higher-pressure, lower-volume flow. It has all the same functional advantages of a step-up transformer and the inevitable transformer losses as well.
The key benefit is that a conventional turbine (or Archimedes Screw) designed to work efficiently at a 1.5m – 2.5m driving head has to be of very large diameter with a large step-up gearbox. In many real-World locations, this makes it too expensive or simply impractical, in shallow water for example.
The work we did in 2009-10 for DECC on a SMEC across the Severn Estuary concluded that compared to a conventional barrage, SMEC would output around 80% of the power at less than half the capital cost. Crucially, however, this greatly superior performance is achieved with minimal environmental impact as the tidal signal is preserved in the upstream lagoon, avoiding the severe damage to the feeding grounds of migratory birdlife that is an unwelcome characteristic of a conventional barrage.
To help successfully commercialise the technology, however, we will eventually want to build a reliable (CFD?) computer model of SMEC which even if partly parametric, would benefit hugely from an improved understanding of the small-scale turbulence and momentum transfer mechanisms in the mixing section.
Topological Representations and the Model Theory of Abelian Group Rings
Abstract
This talk will be accessible to non-specialists and in particular details how model theory naturally leads to specific representations of abelian group rings as rings of global sections. The model-theoretic approach is motivated by algebraic results of Amitsur on the Semisimplicity Problem, on which a brief discussion will first be given.
Adaptive Networks of Opinion Formation in Humans and Animals
Abstract
A central challenge in socio-physics is understanding how groups of self-interested agents make collective decisions. For humans many insights in the underlying opinion formation process have been gained from network models, which represent agents as nodes and social contacts as links. Over the past decade these models have been expanded
to include the feedback of the opinions held by agents on the structure of the network. While a verification of these adaptive models in humans is still difficult, evidence is now starting to appear in opinion formation experiments with animals, where the choice that is being made concerns the direction of movement. In this talk I show how analytical insights can be gained from adaptive networks models and how predictions from these models can be verified in experiments with swarming animals. The results of this work point to a similarity between swarming and human opinion formation and reveal insights in the dynamics of the opinion formation process. In particular I show that in a population that is under control of a strongly opinionated minority a democratic consensus can be restored by the addition of
uninformed individuals.
Smooth numbers in arithmetic progressions
Abstract
A number is said to be $y$-smooth if all of its prime factors are
at most $y$. A lot of work has been done to establish the (equi)distribution
of smooth numbers in arithmetic progressions, on various ranges of $x$,$y$
and $q$ (the common difference of the progression). In this talk I will
explain some recent results on this problem. One ingredient is the use of a
majorant principle for trigonometric sums to carefully analyse a certain
contour integral.