Fri, 04 Jun 2010

17:00 - 18:00
L3

Sudoku... More than just a game

Tristan Denley
(Austin Peay)
Abstract

Whether as the sudoku puzzles of popular culture or as

restricted coloring problems on graphs or hypergraphs, completing partial

Latin squares and cubes present a framework for a variety of intriguing

problems. In this talk we will present several recent results on

completing partial Latin squares and cubes.

Fri, 04 Jun 2010
14:15
DH 1st floor SR

An overview of some recent progress in incomplete-market equilibria

Gordan Zitkovic
(UT Austin)
Abstract

In addition to existence, the excess-demand approach allows us to establish uniqueness and provide efficient computational algorithms for various complete- and incomplete-market stochastic financial equilibria.

A particular attention will be paid to the case when the agents exhibit constant absolute risk aversion. An overview of recent results (including those jointly obtained with M. Anthropelos and with Y. Zhao) will be given.

Fri, 04 Jun 2010

11:30 - 12:30
Gibson 1st Floor SR

T-duality in AdS$_5$

Ron Reid-Edwards
(Oxford)
Abstract

This will discuss the paper of Ricci, Tseytlin & Wolf from 2007.

Fri, 04 Jun 2010

10:00 - 13:00
DH 1st floor SR

Compressive sampling of radar and electronic warfare data

Andy Stove
(Thales)
Abstract

'Compressive sampling' is a topic of current interest. It relies on data being sparse in some domain, which allows what is apparently 'sub Nyquist' sampling so that the quantities of data which must be handled become more closely related to the information rate. This principal would appear to have (at least) three applications for radar and electronic warfare: \\

The most modest application is to reduce the amount of data which we must handle: radar and electronic warfare receivers generate vast amounts of data (up to 1Gbit/second or even 10Gbit.sec). It is desirable to be able to store this data for future analysis and it is also becoming increasingly important to be able to share it between different sensors, which, prima facie, requires vast communication bandwidths and it would be valuable to be able to find ways to handle this more efficiently. \\

The second advantage is that if suitable data domains can be identified, it may also be possible to pre-process the data before the analogue to digital converters in the receivers, to reduce the demands on these critical components. \\

The most ambitious use of compressive sensing would be to find ways of modifying the radar waveforms, and the electronic warfare receiver sampling strategies, to change the domain in which the information is represented to reduce the data rates at the receiver 'front ends', i.e. make the data at the front end better match the information we really want to acquire.\\

The aim of the presentation will be to describe the issues with which we are faced, and to discuss how compressive sampling might be able to help. A particular issue which will be raised is how we might find domains in which the data is sparse.

Thu, 03 Jun 2010
17:00
L3

Topos Quantum Logic

Andreas Doering
(Oxford)
Abstract

Standard quantum logic, as intitiated by Birkhoff and von Neumann, suffers from severe problems which relate quite directly to interpretational issues in the foundations of quantum theory. In this talk, I will present some aspects of the so-called topos approach to quantum theory, as initiated by Isham and Butterfield, which aims at a mathematical reformulation of quantum theory and provides a new, well-behaved form of quantum logic that is based upon the internal logic of a certain (pre)sheaf topos.

Thu, 03 Jun 2010

16:30 - 17:30
DH 1st floor SR

Structured media with defects: asymptotic models and localisation

Alexander Movchan
(University of Liverpool)
Abstract

Bloch Floquet waves are considered in structured media. Such waves are dispersive and the dispersion diagrams contain stop bands. For an example of a harmonic lattice, we discuss dynamic band gap Green’s functions characterised by exponential localisation. This is followed by simple models of exponentially localised defect modes. Asymptotic models involving uniform asymptotic approximations of physical fields in structured media are compared with homogenisation approximations.

Thu, 03 Jun 2010

12:00 - 13:00
SR1

Cohomology of moduli spaces

Oscar Randal-Williams
(Oxford)
Abstract

I will discuss what is known about the cohomology of several moduli spaces coming from algebraic and differential geometry. These are: moduli spaces of non-singular curves (= Riemann surfaces) $M_g$, moduli spaces of nodal curves $\overline{M}_g$, moduli spaces of holomorphic line bundles on curves $Hol_g^k \to M_g$, and the universal Picard varieties $Pic^k_g \to M_g$. I will construct characteristic classes on these spaces, talk about their homological stability, and try to explain why the constructed classes are the only stable ones. If there is time I will also talk about the Picard groups of these moduli spaces.

Much of this work is due to other people, but some is joint with J. Ebert.

Tue, 01 Jun 2010

17:00 - 18:00
L2

The cluster category of Dynkin type $A_\infty$

Peter Jorgensen
(Newcastle)
Abstract

\ \ The cluster category of Dynkin type $A_\infty$ is a ubiquitous object with interesting properties, some of which will be explained in this talk.

\\

\ \ Let us denote the category by $\mathcal{D}$. Then $\mathcal{D}$ is a 2-Calabi-Yau triangulated category which can be defined in a standard way as an orbit category, but it is also the compact derived category $D^c(C^{∗}(S^2;k))$ of the singular cochain algebra $C^*(S^2;k)$ of the 2-sphere $S^{2}$. There is also a “universal” definition: $\mathcal{D}$ is the algebraic triangulated category generated by a 2-spherical object. It was proved by Keller, Yang, and Zhou that there is a unique such category.

\\

\ \ Just like cluster categories of finite quivers, $\mathcal{D}$ has many cluster tilting subcategories, with the crucial difference that in $\mathcal{D}$, the cluster tilting subcategories have infinitely many indecomposable objects, so do not correspond to cluster tilting objects.

\\

\ \ The talk will show how the cluster tilting subcategories have a rich combinatorial

structure: They can be parametrised by “triangulations of the $\infty$-gon”. These are certain maximal collections of non-crossing arcs between non-neighbouring integers.

\\

\ \ This will be used to show how to obtain a subcategory of $\mathcal{D}$ which has all the properties of a cluster tilting subcategory, except that it is not functorially finite. There will also be remarks on how $\mathcal{D}$ generalises the situation from Dynkin type $A_n$ , and how triangulations of the $\infty$-gon are new and interesting combinatorial objects.

Tue, 01 Jun 2010

15:45 - 16:45
L3

(HoRSe seminar) Realizations of motives

Denis-Charles Cisinski
(Paris 13)
Abstract

A categorification of cycle class maps consists to define

realization functors from constructible motivic sheaves to other

categories of coefficients (e.g. constructible $l$-adic sheaves), which are compatible with the six operations. Given a field $k$, we

will describe a systematic construction, which associates,

to any cohomology theory $E$, represented in $DM(k)$, a

triangulated category of constructible $E$-modules $D(X,E)$, for $X$

of finite type over $k$, endowed with a realization functor from

the triangulated category of constructible motivic sheaves over $X$.

In the case $E$ is either algebraic de Rham cohomology (with $char(k)=0$), or $E$ is $l$-adic cohomology, one recovers in this way the triangulated categories of $D$-modules or of $l$-adic sheaves. In the case $E$ is rigid cohomology (with $char(k)=p>0$), this construction provides a nice system of $p$-adic coefficients which is closed under the six operations.

Tue, 01 Jun 2010

14:30 - 15:30
L3

Subspaces in sumsets: a problem of Bourgain and Green

Tom Sanders
(Cambridge)
Abstract

Suppose that $A \subset \mathbb F_2^n$ has density $\Omega(1)$. How

large a subspace is $A+A:=\{a+a’:a,a’ \in A\}$ guaranteed to contain? We

discuss this problem and how the the result changes as the density

approaches $1/2$.

Tue, 01 Jun 2010

14:00 - 15:00
L2

(HoRSe seminar) Motivic sheaves over excellent schemes

Denis-Charles Cisinski
(Paris 13)
Abstract

Starting from Morel and Voevodsky's stable homotopy theory of schemes, one defines, for each noetherian scheme of finite dimension $X$, the triangulated category $DM(X)$ of motives over $X$ (with rational coefficients). These categories satisfy all the the expected functorialities (Grothendieck's six operations), from

which one deduces that $DM$ also satisfies cohomological proper

descent. Together with Gabber's weak local uniformisation theorem,

this allows to prove other expected properties (e.g. finiteness

theorems, duality theorems), at least for motivic sheaves over

excellent schemes.

Tue, 01 Jun 2010

13:15 - 13:45
DH 1st floor SR

Towards a Colonic Crypt Model with a Realistic, Deformable Geometry

Sara-Jane Dunn
(Oxford)
Abstract

Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide, demanding a response from scientists and clinicians to understand its aetiology and develop effective treatment. CRC is thought to originate via genetic alterations that cause disruption to the cellular dynamics of the crypts of Lieberkűhn, test-tube shaped glands located in both the small and large intestine, which are lined with a monolayer of epithelial cells. It is believed that during colorectal carcinogenesis, dysplastic crypts accumulate mutations that destabilise cell-cell contacts, resulting in crypt buckling and fission. Once weakened, the corrupted structure allows mutated cells to migrate to neighbouring crypts, to break through to the underlying tissue and so aid the growth and malignancy of a tumour. To provide further insight into the tissue-level effects of these genetic mutations, a multi-scale model of the crypt with a realistic, deformable geometry is required. This talk concerns the progress and development of such a model, and its usefulness as a predictive tool to further the understanding of interactions across spatial scales within the context of colorectal cancer.

Mon, 31 May 2010

17:00 - 18:00
Gibson 1st Floor SR

Mathematical, Numerical and Physical Principles for Turbulent Mixing

James Glimm
(SUNY at Stony Brook)
Abstract
Numerical approximation of fluid equations are reviewed. We identify numerical mass diffusion as a characteristic problem in most simulation codes. This fact is illustrated by an analysis of fluid mixing flows. In these flows, numerical mass diffusion has the effect of over regularizing the solution. Simple mathematical theories explain this difficulty. A number of startling conclusions have recently been observed, related to numerical mass diffusion. For a flow accelerated by multiple shock waves, we observe an interface between the two fluids proportional to Delta x-1, that is occupying a constant fraction of the available mesh degrees of freedom. This result suggests
  • (a) nonconvergence for the unregularized mathematical problem or
  • (b) nonuniqueness of the limit if it exists, or
  • (c) limiting solutions only in the very weak form of a space time dependent probability distribution.
The cure for the pathology (a), (b) is a regularized solution, in other words inclusion of all physical regularizing effects, such as viscosity and physical mass diffusion. We do not regard (c) as a pathology, but an inherent feature of the equations.
In other words, the amount and type of regularization of an unstable flow is of central importance. Too much regularization, with a numerical origin, is bad, and too little, with respect to the physics, is also bad. For systems of equations, the balance of regularization between the distinct equations in the system is of central importance.
At the level of numerical modeling, the implication from this insight is to compute solutions of the Navier-Stokes, not the Euler equations. Resolution requirements for realistic problems make this solution impractical in most cases. Thus subgrid transport processes must be modeled, and for this we use dynamic models of the turbulence modeling community. In the process we combine and extend ideas of the capturing community (sharp interfaces or numerically steep gradients) with conventional turbulence models, usually applied to problems relatively smooth at a grid level.
The numerical strategy is verified with a careful study of a 2D Richtmyer-Meshkov unstable turbulent mixing problem. We obtain converged solutions for such molecular level mixing quantities as a chemical reaction rate. The strategy is validated (comparison to laboratory experiments) through the study of 3D Rayleigh-Taylor unstable flows.
Mon, 31 May 2010

16:00 - 17:00
SR1

Looking at Elliptic L-functions via Modular Symbols

James Maynard
(University of Oxford)
Abstract

We have seen that L-functions of elliptic curves of conductor N coincide exactly with L-functions of weight 2 newforms of level N from the Modularity Theorem. We will show how, using modular symbols, we can explicitly compute bases of newforms of a given level, and thus investigate L-functions of an elliptic curve of given conductor. In particular, such calculations allow us to numerically test the Birch-Swinnerton-Dyer conjecture.