Thu, 13 May 2010
13:00
DH 1st floor SR

Investor Activeness and Investment Performance

Jose Martinez
(SBS)
Abstract

Using a large panel data set of Swedish pension savers (75,000 investors, daily portfolios 2000-2008) we show that active investors outperform inactive investors and that there is a causal effect of fund switches on performance. The higher performance is earned not by market timing, but by dynamic fund picking (within the same asset class). While activity is positive for the individual investor, there are indications that it generates costs for other investors.

Thu, 13 May 2010

12:30 - 13:30
Gibson 1st Floor SR

Eigenfunction Expansion Solutions of the Linear Viscoelastic Wave Equation

David Al-Attar
(Department of Earth Sciences, University of Oxford)
Abstract

In this talk we discuss the solution of the elastodynamic

equations in a bounded domain with hereditary-type linear

viscoelastic constitutive relation. Existence, uniqueness, and

regularity of solutions to this problem is demonstrated

for those viscoelastic relaxation tensors satisfying the condition

of being completely monotone. We then consider the non-self-adjoint

and non-linear eigenvalue problem associated with the

frequency-domain form of the elastodynamic equations, and show how

the time-domain solution of the equations can be expressed in

terms of an eigenfunction expansion.

Thu, 13 May 2010

12:00 - 13:00
SR1

Moduli of sheaves and quiver sheaves

Vicky Hoskins
(Oxford)
Abstract

A moduli problem in algebraic geometry is essentially a classification problem, I will introduce this notion and define what it means for a scheme to be a fine (or coarse) moduli space. Then as an example I will discuss the classification of coherent sheaves on a complex projective scheme up to isomorphism using a method due to Alvarez-Consul and King. The key idea is to 'embed' the moduli problem of sheaves into the moduli problem of quiver representations in the category of vector spaces and then use King's moduli spaces for quiver representations. Finally if time permits I will discuss recent work of Alvarez-Consul on moduli of quiver sheaves; that is, representations of quivers in the category of coherent sheaves.

Wed, 12 May 2010
17:00
L2

The extensive correspondence of John Wallis (1616–1703)

Philip Beeley
Abstract

What do historians of mathematics do? What sort of questions do they ask? What kinds of sources do they use? This series of four informal lectures will demonstrate some of the research on history of mathematics currently being done in Oxford. The subjects range from the late Renaissance mathematician Thomas Harriot (who studied at Oriel in 1577) to the varied and rapidly developing mathematics of the seventeenth century (as seen through the eyes of Savilian Professor John Wallis, and others) to the emergence of a new kind of algebra in Paris around 1830 in the work of the twenty-year old Évariste Galois.

Each lecture will last about 40 minutes, leaving time for questions and discussion. No previous knowledge is required: the lectures are open to anyone from the department or elsewhere, from undergraduates upwards.

Wed, 12 May 2010

11:30 - 12:30
ChCh, Tom Gate, Room 2

The Grigorchuk Group

Elisabeth Fink
(University of Oxford)
Abstract

I'll start with the definition of the first Grigorchuk group as an automorphism group on a binary tree. After that I give a short overview about what growth means, and what kinds of growth we know. On this occasion I will mention a few groups that have each kind of growth and also outline what the 'Gap Problem' was. Having explained this I will prove - or depending on the time sketch - why this Grigorchuk group has intermediate growth. Depending on the time I will maybe also mention one or two open problems concerning growth.

Tue, 11 May 2010

16:00 - 17:00
SR1

The Asymptotic Cone of a Symmetric Space is a Euclidean Building

Andrew Sale
(Oxford)
Abstract

I will introduce Symmetric spaces via a result of Kleiner & Leeb, comparing the axioms in their definition of a Euclidean building with properties of symmetric spaces of noncompact type.

Tue, 11 May 2010

15:45 - 16:45
L3

Symplectic homology of 4-dimensional Weinstein manifolds and Legendrian homology of links

Tobias Ekholm
(Uppsala)
Abstract

We show how to compute the symplectic homology of a 4-dimensional Weinstein manifold from a diagram of the Legendrian link which is the attaching locus of its 2-handles. The computation uses a combination of a generalization of Chekanov's description of the Legendrian homology of links in standard contact 3-space, where the ambient contact manifold is replaced by a connected sum of $S^1\times S^2$'s, and recent results on the behaviour of holomorphic curve invariants under Legendrian surgery.

Tue, 11 May 2010

12:00 - 13:00
L3

Axions, Inflation and the Anthropic Principle

Katherine Mack (Cambridge)
Abstract

The QCD axion is the leading solution to the strong-CP problem, a

dark matter candidate, and a possible result of string theory

compactifications. However, for axions produced before inflation, high

symmetry-breaking scales (such as those favored in string-theoretic axion

models) are ruled out by cosmological constraints unless both the axion

misalignment angle and the inflationary Hubble scale are extremely

fine-tuned. I will discuss how attempting to accommodate a high-scale axion

in inflationary cosmology leads to a fine-tuning problem that is worse than

the strong-CP problem the axion was originally invented to solve, and how

this problem is exacerbated when additional axion-like fields from string

theory are taken into account. This problem remains unresolved by anthropic

selection arguments commonly applied to the high-scale axion scenario.

Mon, 10 May 2010

17:00 - 18:00
Gibson 1st Floor SR

Spectral stability for solitary water waves

Robert Pego
(Carnegie Mellon University)
Abstract
I will recount progress regarding the robustness of solitary waves in
nonintegrable Hamiltonian systems such as FPU lattices, and discuss
a proof (with Shu-Ming Sun) of spectral stability of small
solitary waves for the 2D Euler equations for water of finite depth
without surface tension.
Mon, 10 May 2010
15:45
L3

Surface quotients of hyperbolic buildings

Anne Thomas
(Oxford)
Abstract

Bourdon's building is a negatively curved 2-complex built out of hyperbolic right-angled polygons. Its automorphism group is large (uncountable) and remarkably rich. We study, and mostly answer, the question of when there is a discrete subgroup of the automorphism group such that the quotient is a closed surface of genus g. This involves some fun elementary combinatorics, but quickly leads to open questions in group theory and number theory. This is joint work with David Futer.

Mon, 10 May 2010

12:00 - 13:00
L3

Crystal Melting and Wall Crossing for Donaldson-Thomas Invariants

Masahito Yamazaki
(Tokyo)
Abstract
I will describe the wall crossing phenomena for (generalized) Donaldson-Thomas invariants (also known as BPS invariants) from a physicist's perspective; the topics include crystal melting and its thermodynamic limit, M-theory derivation of wall crossing, and open wall crossing.
Fri, 07 May 2010
14:15
DH 1st floor SR

Efficiency for the concave Order and Multivariate

Dana Rose-Anne (Joint With OMI)
(Dauphine)
Abstract

comonotonicity joint work with Carlier and Galichon Abstact This paper studies efficient risk-sharing rules for the concave dominance order. For a univariate risk, it follows from a \emph{comonotone dominance principle}, due to Landsberger and

Meilijson that efficiency is

characterized by a comonotonicity condition. The goal of the paper is to generalize the comonotone dominance principle as well as the equivalence between efficiency and comonotonicity to the multi-dimensional case. The multivariate case is more involved (in particular because there is no immediate extension of the notion of comonotonicity) and it is addressed by using techniques from convex duality and optimal transportation.

Fri, 07 May 2010

10:00 - 12:00

Engineering Surgery session

Various
(Engineering)
Abstract
Note this event is in the Thom Conference Room, Thom Building, Engineering Department 10am Prof David Edwards 10:30am Dr Alexander Korsunsky 11am Dr Zhong You
Thu, 06 May 2010
17:00
L3

Definability in valued Ore modules

Luc Belair
(Montreal/Paris)
Abstract

We consider valued fields with a distinguished isometry or contractive derivation, as valued modules over the Ore ring of difference operators. This amounts to study linear difference/differential

equations with respect to the distinguished isometry/derivation.

Under certain assumptions on the residue field, but in all characteristics, we obtain quantifier elimination in natural languages, and the absence of the independence property.

We will consider other operators of interest.

Thu, 06 May 2010

16:30 - 17:30
DH 1st floor SR

Modelling plant growth

Arezki Boudaoud
(Department of Biology Ecole Normale Supérieure de Lyon)
Abstract

How does form emerge from cellular processes? Using cell-based mechanical models of growth, we investigated the geometry of leaf vasculature and the cellular arrangements at the shoot apex. These models incorporate turgor pressure, wall mechanical properties and cell division. In connection with experimental data, they allowed us to, on the one hand, account for characteristic geometrical property of vein junctions, and, on the other hand, speculate that growth is locally regulated.

Thu, 06 May 2010

14:00 - 15:00
3WS SR

A Preconditioned Conjugate Gradient Method for Optimal Control Problems with Control and State Constraints

Prof Roland Herzog
(Chemnitz University of Technology)
Abstract

We consider saddle point problems arising as (linearized) optimality conditions in elliptic optimal control problems. The efficient solution of such systems is a core ingredient in second-order optimization algorithms. In the spirit of Bramble and Pasciak, the preconditioned systems are symmetric and positive definite with respect to a suitable scalar product. We extend previous work by Schoeberl and Zulehner and consider problems with control and state constraints. It stands out as a particular feature of this approach that an appropriate symmetric indefinite preconditioner can be constructed from standard preconditioners for those matrices which represent the inner products, such as multigrid cycles.

Numerical examples in 2D and 3D are given which illustrate the performance of the method, and limitations and open questions are addressed.