11:00
11:00
11:00
Introduction to and Advances in Random Finite Set Theory for Tracking. POSTPONED TO A LATER DATE.
16:00
10:10
The Power of Choice in a Generalized Polya Urn Model
Abstract
Opers, Quot-schemes and Frobenius-destabilised vector bundles over curves
Abstract
In this talk I will introduce and study opers over a smooth projective curve X defined over a field of positive characteristic. I will describe a bijective correspondence between the set of stable vector bundles E over X such that the pull-back F^*(E) under the Frobenius
map F of X has maximal Harder-Narasimhan polygon and the set of opers having zero p-curvature. These sets turn out to be finite, which allows us to derive dimensions of certain Quot-schemes and certain loci of stable Frobenius-destabilized vector bundles over X.
Random graphs with few disjoint cycles
Abstract
Fix a positive integer $k$, and consider the class of all graphs which do not have $k+1$ vertex-disjoint cycles. A classical result of Erdos and P\'{o}sa says that each such graph $G$ contains a blocker of size at most $f(k)$. Here a {\em blocker} is a set $B$ of vertices such that $G-B$ has no cycles.
We give a minor extension of this result, and deduce that almost all such labelled graphs on vertex set $1,\ldots,n$ have a blocker of size $k$. This yields an asymptotic counting formula for such graphs; and allows us to deduce further properties of a graph $R_n$ taken uniformly at random from the class: we see for example that the probability that $R_n$ is connected tends to a specified limit as $n \to \infty$.
There are corresponding results when we consider unlabelled graphs with few disjoint cycles. We consider also variants of the problem involving for example disjoint long cycles.
This is joint work with Valentas Kurauskas and Mihyun Kang.
14:15
Oblivious Routing in the $L_p$ norm
Abstract
Gupta et al. introduced a very general multi-commodity flow problem in which the cost of a given flow solution on a graph $G=(V,E)$ is calculated by first computing the link loads via a load-function l, that describes the load of a link as a function of the flow traversing the link, and then aggregating the individual link loads into a single number via an aggregation function.
We show the existence of an oblivious routing scheme with competitive ratio $O(\log n)$ and a lower bound of $\Omega(\log n/\logl\og n)$ for this model when the aggregation function agg is an $L_p$-norm.
Our results can also be viewed as a generalization of the work on approximating metrics by a distribution over dominating tree metrics and the work on minimum congestion oblivious. We provide a convex combination of trees such that routing according to the tree distribution approximately minimizes the $L_p$-norm of the link loads. The embedding techniques of Bartal and Fakcharoenphol et al. [FRT03] can be viewed as solving this problem in the $L_1$-norm while the result on congestion minmizing oblivious routing solves it for $L_\infty$. We give a single proof that shows the existence of a good tree-based oblivious routing for any $L_p$-norm.
17:00
Elastic models for growing tissues: scaling laws and derivation by Gamma convergence
Abstract
Certain elastic structures and growing tissues (leaves, flowers or marine invertebrates) exhibit residual strain at free equilibria. We intend to study this phenomena through an elastic growth variational model. We will first discuss this model from a differential geometric point of view: the growth seems to change the intrinsic metric of the tissue to a new target non-flat metric. The non-vanishing curvature is the cause of the non-zero stress at equilibria.
We further discuss the scaling laws and $\Gamma$-limits of the introduced 3d functional on thin plates in the limit of vanishing thickness. Among others, given special forms of growth tensors, we rigorously derive the non-Euclidean versions of Kirchhoff and von Karman models for elastic non-Euclidean plates. Sobolev spaces of isometries and infinitesimal isometries of 2d Riemannian manifolds appear as the natural space of admissible mappings in this context. In particular, as a side result, we obtain an equivalent condition for existence of a $W^{2,2}$ isometric immersion of a given $2$d metric on a bounded domain into $\mathbb R3$.
15:45
14:15
Lattices in Simple Lie Groups: A Survey
Abstract
Lattices in semisimple Lie groups have been studied from the point of view of number theory, algebraic groups, topology and geometry, and geometric group theory. The Fragestellung of one line of investigation is to what extent the properties of the lattice determine, and are determined by, the properties of the group. This talk reviews a number of results about lattices, and in particular looks at Mostow--Margulis rigidity.
On the classification of Brane Tilings
Abstract
Geometrically constrained walls in two dimension.
Abstract
We address the effect of extreme geometry on a non-convex variational problem motivated by recent investigations of magnetic domain walls trapped by sharp thin necks. We prove the existence of local minimizers representing geometrically constrained walls under suitable symmetry assumptions on the domains and provide an asymptotic characterization of the wall profile. The asymptotic behavior, which depends critically on the scaling of length and width of the neck, turns out to be qualitatively different from the higher-dimensional case and a richer variety of regimes is shown to exist.
A comparison of stochastic and analytical models for cell migration
Abstract
Abstract: Cell migration and growth are essential components of the development of multicellular organisms. The role of various cues in directing cell migration is widespread, in particular, the role of signals in the environment in the control of cell motility and directional guidance. In many cases, especially in developmental biology, growth of the domain also plays a large role in the distribution of cells and, in some cases, cell or signal distribution may actually drive domain growth. There is a ubiquitous use of partial differential equations (PDEs) for modelling the time evolution of cellular density and environmental cues. In the last twenty years, a lot of attention has been devoted to connecting macroscopic PDEs with more detailed microscopic models of cellular motility, including models of directional sensing and signal transduction pathways. However, domain growth is largely omitted in the literature. In this paper, individual-based models describing cell movement and domain growth are studied, and correspondence with a macroscopic-level PDE describing the evolution of cell density is demonstrated. The individual-based models are formulated in terms of random walkers on a lattice. Domain growth provides an extra mathematical challenge by making the lattice size variable over time. A reaction-diffusion master equation formalism is generalised to the case of growing lattices and used in the derivation of the macroscopic PDEs.
14:30