Cycles in directed graphs
Abstract
There are many theorems concerning cycles in graphs for which it is natural to seek analogous results for directed graphs. I will survey
recent progress on certain questions of this type. New results include
(i) a solution to a question of Thomassen on an analogue of Dirac’s theorem
for oriented graphs,
(ii) a theorem on packing cyclic triangles in tournaments that “almost” answers a question of Cuckler and Yuster, and
(iii) a bound for the smallest feedback arc set in a digraph with no short directed cycles, which is optimal up to a constant factor and extends a result of Chudnovsky, Seymour and Sullivan.
These are joint work respectively with (i) Kuhn and Osthus, (ii) Sudakov, and (iii) Fox and Sudakov.
12:00
A uniqueness theorem for charged rotating black holes in five- dimensional minimal supergravity
Abstract
We show that a charged rotating black hole in five-dimensional Einstein-Maxwell-Chern-Simons theory is uniquely characterized by the mass, charge, and two independent angular momenta, under the assumptions of the existence of two commuting axial isometries and spherical topology of horizon cross-sections. Therefore, such a black hole must be described by the Chong-Cveti\v{c}-L\"u-Pope metric.
Regularity properties of solutions to elastic plastic problems with hardening
Abstract
We consider problems of elastic plastic deformation with isotropic and kinematic hardening.
A dual formulation with stresses as principal variables is used.
We obtain several results on Sobolev space regularity of the stresses
and strains.
In particular, we obtain the existence of a full derivative of the
stress tensor up to the boundary of the basic domain.
Finally, we present an outlook for obtaining further regularity
results in connection with general nonlinear evolution problems.
The Chevalley-Warning Theorem
Abstract
The goal of this talk is to give sufficient conditions for the existence of points on certain varieties defned over finite fields.
15:45
The maximal number of exceptional Dehn surgeries
Abstract
I will outline the proof of two old conjectures of Cameron Gordon. The first states that the maximal number of exceptional Dehn surgeries on a 1-cusped hyperbolic 3-manifold is 10. The second states the maximal distance between exceptional Dehn surgeries on a 1-cusped hyperbolic 3-manifold is 8. The proof uses a combination of new geometric techniques and rigorous computer-assisted calculations.
This is joint work with Rob Meyerhoff.
15:45
Random walks on random graphs and trees
Abstract
14:15
A tree approach to the analysis of real paths with unbounded variation
The UV question in maximally supersymmetric field theories
Abstract
16:30
An example of 2-category
Abstract
We will also explain how these groups of symmetries are related to the notion of endoscopic groups, which was introduced by Langlands in his stabilisation of the trace formula. We will also briefly explain how the symmetry groups help one to acquire a rather good understanding of the cohomology of the Hitchin fibration and eventually the proof of the fundamental lemma in Langlands' program.
14:15
Martingale optimality, BSDE and cross hedging of insurance derivatives
Abstract
A financial market model is considered on which agents (e.g. insurers) are subject to an exogenous financial risk, which they trade by issuing a risk bond. Typical risk sources are climate or weather. Buyers of the bond are able to invest in a market asset correlated with the exogenous risk. We investigate their utility maximization problem, and calculate bond prices using utility indi®erence. This hedging concept is interpreted by means of martingale optimality, and solved with BSDE and Malliavin's calculus tools. Prices are seen to decrease as a result of dynamic hedging. The price increments are interpreted in terms of diversification pressure.
14:00
Optimising peripheral oxygen transport by means of microvascular remodelling
Free surface flows in the presence of electric fields
Abstract
GIBSON BUILDING COMMON ROOM 2ND FLOOR
(Coffee and Cakes in Gibson Meeting Room - opposite common room)
The effects of electric fields on nonlinear free surface flows are investigated. Both inviscid and Stokes flows are considered.
Fully nonlinear solutions are computed by boundary integral equation methods and weakly nonlinear solutions are obtained by using long wave asymptotics and lubrication theory. Effects of electric fields on the stability of the flows are discussed. In addition applications to coating flows are presented.
16:00
16:00
Recent variants and applications of the arithmetic large sieve
Abstract
The "large sieve" was invented by Linnik in order to attack problems involving the distribution of integers subject to certain constraints modulo primes, for which earlier methods of sieve theory were not suitable. Recently, the arithmetic large sieve inequality has been found to be capable of much wider application, and has been used to obtain results involving objects not usually considered as related to sieve theory. A form of the general sieve setting will be presented, together with sample applications; those may involve arithmetic properties of random walks on discrete groups, zeta functions over finite fields, modular forms, or even random groups.
Geometric Numerical Integration of Differential Equations
Abstract
Geometric integration is the numerical integration of a differential equation, while preserving one or more of its geometric/physical properties exactly, i.e. to within round-off error.
Many of these geometric properties are of crucial importance in physical applications: preservation of energy, momentum, angular momentum, phase-space volume, symmetries, time-reversal symmetry, symplectic structure and dissipation are examples. The field has tantalizing connections to dynamical systems, as well as to Lie groups.
In this talk we first present a survey of geometric numerical integration methods for differential equations, and then exemplify this by discussing symplectic vs energy-preserving integrators for ODEs as well as for PDEs.
13:00
13:00
Diffusion processes and coalescent trees.
Abstract
Diffusion process models for evolution of neutral genes have a particle dual coalescent process underlying them. Models are reversible with transition functions having a diagonal expansion in orthogonal polynomial eigenfunctions of dimension greater than one, extending classical one-dimensional diffusion models with Beta stationary distribution and Jacobi polynomial expansions to models with Dirichlet or Poisson Dirichlet stationary distributions. Another form of the transition functions is as a mixture depending on the mutant and non-mutant families represented in the leaves of an infinite-leaf coalescent tree.
The one-dimensional Wright-Fisher diffusion process is important in a characterization of a wider class of continuous time reversible Markov processes with Beta stationary distributions originally studied by Bochner (1954) and Gasper (1972). These processes include the subordinated Wright-Fisher diffusion process.
Semi-flat fibrations of special Lagrangian and coassociative submanifolds
Abstract
I will go over my paper (arXiv:0902.2135v1) which explains how semi-flat Calabi-Yau / G$_2$ manifolds can be constructed from minimal 3-submanifolds in a signature (3,3) vector space.
11:00