Old theorems, new proofs: A week in fusion systems (HELD IN CHCH, Tom Gate, Room 2)
Abstract
Last week, I proved five theorems about fusion systems, each with a (relatively) trivial proof. All of these theorems were known, but in each case the proof was (in some cases highly) non-trivial. I will introduce fusion systems and talk a bit about why they are interesting, and then prove some, or maybe all, of the theorems I proved.
Representation zeta functions of p-adic Lie groups
Abstract
In a joint project with Christopher Voll, I have investigated the representation zeta functions of compact p-adic Lie groups. In my talk I will explain some of our results, e.g. the existence of functional equations in a suitable global setting, and discuss open problems. In particular, I will indicate how piecing together information about local zeta functions allows us to determine the precise abscissa of convergence for the representation zeta function of the arithmetic group SL3(Z).
Vertex Turan problems in the hypercube
Abstract
Dissipative dynamics in large and unbounded domains: attractors, entropies and space-time chaos
15:45
15:45
A new combinatorial method for calculating the moments of Lévy area
Abstract
14:15
Existence of unique solutions for SDEs for individual driving paths.
Abstract
14:15
Born-Infeld gravity, bigravity, and their cosmological applications
Abstract
On the accuracy of inexact saddle point solvers
Abstract
For large--scale saddle point problems, the application of exact iterative schemes and preconditioners may be computationally expensive. In practical situations, only approximations to the inverses of the diagonal block or the related cross-product matrices are considered, giving rise to inexact versions of various solvers. Therefore, the approximation effects must be carefully studied. In this talk we study numerical behavior of several iterative Krylov subspace solvers applied to the solution of large-scale saddle point problems. Two main representatives of the segregated solution approach are analyzed: the Schur complement reduction method, based on an (iterative) elimination of primary variables and the null-space projection method which relies on a basis for the null-space for the constraints. We concentrate on the question what is the best accuracy we can get from inexact schemes solving either Schur complement system or the null-space projected system when implemented in finite precision arithmetic. The fact that the inner solution tolerance strongly influences the accuracy of computed iterates is known and was studied in several contexts.
In particular, for several mathematically equivalent implementations we study the influence of inexact solving the inner systems and estimate their maximum attainable accuracy. When considering the outer iteration process our rounding error analysis leads to results similar to ones which can be obtained assuming exact arithmetic. The situation is different when we look at the residuals in the original saddle point system. We can show that some implementations lead ultimately to residuals on the the roundoff unit level independently of the fact that the inner systems were solved inexactly on a much higher level than their level of limiting accuracy. Indeed, our results confirm that the generic and actually the cheapest implementations deliver the approximate solutions which satisfy either the second or the first block equation to the working accuracy. In addition, the schemes with a corrected direct substitution are also very attractive. We give a theoretical explanation for the behavior which was probably observed or it is already tacitly known. The implementations that we pointed out as optimal are actually those which are widely used and suggested in applications.
14:00
Zermelo set theory, Mac Lane set theory and set forcing
Abstract
Over certain transitive models of Z, the usual treatment of forcing goes awry. But the provident closure of any such set is a provident model of Z, over which, as shown in "Provident sets and rudimentary set forcing", forcing works well. In "The Strength of Mac Lane Set Theory" a process is described of passing from a transitive model of Z + Tco to what is here called its lune, which is a larger model of Z + KP.
Theorem: Over a provident model of Z, the two operations of forming lunes and generic extensions commute.
Corresponding results hold for transitive models of Mac Lane set theory + Tco.
Invariant Variational Problems and Invariant Flows
Abstract
I will introduce the moving frame approach to the analysis of invariant variational problems and the evolution of differential invariants under invariant submanifold flows. Applications will include differential geometric flows, integrable systems, and image processing.
Graphs on surfaces and virtual knots
Abstract
surfaces the natural duality can be generalized to a duality with respect to a subset of edges. The generalized dual graph might be embedded into a different surface. I will explain a relation between the Bollobas-Riordan polynomials of dual graphs. This relation unifies various Thistlethwaite type theorems.
Stochastic Resonance: Introduction, Applications and How It Could Have Explained Ice Ages
14:30
14:15
Contracting for optimal investment with risk control
Abstract
The theory of risk measurement has been extensively developed over the past ten years or so, but there has been comparatively little effort devoted to using this theory to inform portfolio choice. One theme of this paper is to study how an investor in a conventional log-Brownian market would invest to optimize expected utility of terminal wealth, when subjected to a bound on his risk, as measured by a coherent law-invariant risk measure. Results of Kusuoka lead to remarkably complete expressions for the solution to this problem.
The second theme of the paper is to discuss how one would actually manage (not just measure) risk. We study a principal/agent problem, where the principal is required to satisfy some risk constraint. The principal proposes a compensation package to the agent, who then optimises selfishly ignoring the risk constraint. The principal can pick a compensation package that induces the agent to select the principal's optimal choice.
11:45
10:00