12:00
12:00
17:00
On some semi-explicit quasiconvex functions with prescribed zero sets
Abstract
For a given Lipschitz graph over a subspace without rank-one matrices with
reasonably small Lipschitz constant, we construct quasiconvex functions of
quadratic growth whose zero sets are exactly the Lipschitz graph by using a
translation method. The gradient of the quasiconvex function is strictly
quasi-monotone. When the graph is a smooth compact manifold, the quasiconvex
function equals the squared distance function near the graph.
The corresponding variational integrals satisfy the Palais-Smale compactness
condition under the homogeneous natural boundary condition.
15:45
Stochastic flows, panar aggregation and the Brownian web
Abstract
Diffusion limited aggregation (DLA) is a random growth model which was
originally introduced in 1981 by Witten and Sander. This model is prevalent in
nature and has many applications in the physical sciences as well as industrial
processes. Unfortunately it is notoriously difficult to understand, and only one
rigorous result has been proved in the last 25 years. We consider a simplified
version of DLA known as the Eden model which can be used to describe the growth
of cancer cells, and show that under certain scaling conditions this model gives
rise to a limit object known as the Brownian web.
14:15
Parabolic Anderson model: Localisation of mass in random media
Abstract
We study the parabolic Anderson problem, i.e., the heat equation on the d-dimentional
integer lattice with independent identically distributed random potential and
localised initial condition. Our interest is in the long-term behaviour of the
random total mass of the unique non-negative solution, and we prove the complete
localisation of mass for potentials with polynomial tails.
12:00
D-brane superpotentials and RG flows on the quintic
Abstract
12:00
Team Meeting
Abstract
Team meetings, held roughly every four weeks, are open to anyone who is
interested. OxMOS post docs and Dphil students will give updates on the
research.
15:15
On connectedness of the centralizers of tori and other concerns around the Weyl group.
Abstract
I'll include a rather short proof of this connectedness in a group of finite
Morley rank, but I'll maybe spend most of the time talking about related matter
without giving proofs.
14:00
A novel signalling mechanism directing cell movement in wound healing - role of physiological electrical fields
10:00
16:30
Biological applications of reaction diffusion equations and low Reynolds number fluid dynamics
Abstract
Aspects of my current research will be reviewed. In terms of reaction diffusion equations, I will review current work on cancer modelling and biological pattern formation. I will then proceed to consider biological applications of low Reynolds number fluid dynamics with respect to cilia-induced flows in the lung and human spermatozoa dynamics.
Multigrid solvers for quantum dynamics - a first look
Abstract
The numerical study of lattice quantum chromodynamics (QCD) is an attempt to extract predictions about the world around us from the standard model of physics. Worldwide, there are several large collaborations on lattice QCD methods, with terascale computing power dedicated to these problems. Central to the computation in lattice QCD is the inversion of a series of fermion matrices, representing the interaction of quarks on a four-dimensional space-time lattice. In practical computation, this inversion may be approximated based on the solution of a set of linear systems.
In this talk, I will present a basic description of the linear algebra problems in lattice QCD and why we believe that multigrid methods are well-suited to effectively solving them. While multigrid methods are known to be efficient solution techniques for many operators, those arising in lattice QCD offer new challenges, not easily handled by classical multigrid and algebraic multigrid approaches. The role of adaptive multigrid techniques in addressing the fermion matrices will be highlighted, along with preliminary results for several model problems.
11:00
The real field with a power function and a dense multiplicative subgroup
14:15