Thu, 27 Apr 2006

14:00 - 15:00
Comlab

How to approach non-normal matrix eigenvalue problems

Prof Beresford Parlett
(UC Berkeley)
Abstract

Non-normal matrices can be tiresome; some eigenvalues may be phlegmatic while others may be volatile. Computable error bounds are rarely used in such computations. We offer a way to proceed. Let (e,q,p') be an approximate eigentriple for non-normal B. Form column and row residuals r = Bq - qe and s' = p'B - ep'. We establish the relation between the smallest perturbation E, in both spectral and Frobenius norms, that makes the approximations correct and the norms of r and s'. Our results extend to the case when q and p are tall thin matrices and e is a small square matrix. Now regard B as a perturbation of B-E to obtain a (first order) bound on the error in e as a product of ||E|| and the condition number of e, namely (||q|| ||p'||)/|p'q|.

Tue, 25 Apr 2006
17:00
L1

GSO Groups

Prof. Michael Vaughan-Lee
(Oxford)