Thu, 12 May 2005

14:00 - 15:00
Comlab

tba

tba
Mon, 09 May 2005
17:00
L1

On the one-dimensional Perona-Malek equation

Kewei Zhang
(Sussex)
Abstract

We use the partial differential inclusion method to establish existence of

infinitely many weak solutions to the one-dimensional version of the

Perona-Malek anisotropic diffusion model in the theory of image processing. We

consider the homogeneous Neumann problem as the model requires.

.

Mon, 09 May 2005
15:45
DH 3rd floor SR

Large deviations for the Yang-Mills measure

Professor Thierry Levy
(ENS Paris)
Abstract

The Yang-Mills energy is a non-negative functional on the space of connections on a principal bundle over a Riemannian manifold. At a heuristical level, this energy determines a Gibbs measure which is called the Yang-Mills measure. When the manifold is a surface, a stochastic process can be constructed - at least in two different ways - which is a sensible candidate for the random holonomy of a connection distributed according to the Yang-Mills measure. This process is constructed by using some specifications given by physicists of its distribution, namely some of its finite-dimensional marginals, which of course physicists have derived from the Yang-Mills energy, but by non-rigorous arguments. Without assuming any familiarity with this stochastic process, I will present a large deviations result which is the first rigorous link between the Yang-Mills energy and the Yang-Mills measure.

Thu, 05 May 2005

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

A new look at Newton's method

Prof Roger Fletcher
(University of Dundee)
Abstract

Current methods for globalizing Newton's Method for solving systems of nonlinear equations fall back on steps biased towards the steepest descent direction (e.g. Levenberg/Marquardt, Trust regions, Cauchy point dog-legs etc.), when there is difficulty in making progress. This can occasionally lead to very slow convergence when short steps are repeatedly taken.

This talk looks at alternative strategies based on searching curved arcs related to Davidenko trajectories. Near to manifolds on which the Jacobian matrix is singular, certain conjugate steps are also interleaved, based on identifying a Pareto optimal solution.

Preliminary limited numerical experiments indicate that this approach is very effective, with rapid and ultimately second order convergence in almost all cases. It is hoped to present more detailed numerical evidence when the talk is given. The new ideas can also be incorporated with more recent ideas such as multifilters or nonmonotonic line searches without difficulty, although it may be that there is no longer much to gain by doing this.

Mon, 02 May 2005
17:00
L1

On a class of quasilinear parabolic equations

Matania Ben-Artzi
(Hebrew University)
Abstract

An important class of nonlinear parabolic equations is the class of quasi-linear equations, i.e., equations with a leading second-order (in space) linear part (e.g., the Laplacian) and a nonlinear part which depends on the first-order spatial derivatives of the unknown function. This class contains the Navier-Stokes system of fluid dynamics, as well as "viscous" versions (or "regularized") of the Hamilton-Jacobi equation, nonlinear hyperbolic conservation laws and more. The talk will present various recent results concerning existence/uniqueness (and nonexistence/nonuniqueness) of global solutions. In addition, a new class of "Bernstein-type" estimates of derivatives will be presented. These estimates are independent of the viscosity parameter and thus lead to results concerning the "zero-viscosity" limit.