17:00
17:00
12:00
On Witten's Perturbative gauge theory as a string theory in twistor space
(Joint String/Relativity Seminar)
17:00
Geometric rigidity of conformal matrices
Abstract
Recently Friesecke, James and Muller established the following
quantitative version of the rigidity of SO(n) the group of special orthogonal
matrices. Let U be a bounded Lipschitz domain. Then there exists a constant
C(U) such that for any mapping v in the L2-Sobelev space the L^2-distance of
the gradient controlls the distance of v a a single roation.
This interesting inequality is fundamental in several problems concerning
dimension reduction in nonlinear elasticity.
In this talk, we will present a joint work with Muller and Zhong where we
investigate an analagous quantitative estimate where we replace SO(n) by an
arbitrary smooth, compact and SO(n) invariant subset of the conformal
matrices E. The main novelty is that exact solutions to the differential
inclusion Df(x) in E a.e.x in U are not necessarily affine mappings.
15:45
14:15
16:30
Stable and Unstable Discretization of Partial Differential Equations
Abstract
Stability is central to the study of numerical algorithms for solving
partial differential equations. But stability can be subtle and elusive. In
fact, for a number of important classes of PDE problems, no one has yet
succeeded in devising stable numerical methods. In developing our
understanding of stability and instability, a wide range of mathematical
ideas--with origins as diverse as functional analysis,differential geometry,
and algebraic topology--have been enlisted and developed. The talk will
explore the concept of stability of discretizations to PDE, its significance,
and recent advances in its understanding.
14:30
14:15
16:30
Joint seminar with Oxford University Computing Laboratory (OUCL Lecture Theatre)
Spreading fronts and fluctuations in sedimen
Spreading fronts and fluctuations in sedimentation
Abstract
While the average settling velocity of particles in a suspension has been successfully predicted, we are still unsuccessful with the r.m.s velocity, with theories suggesting a divergence with the size of
the container and experiments finding no such dependence. A possible resolution involves stratification originating from the spreading of the front between the clear liquid above and the suspension below. One theory describes the spreading front by a nonlinear diffusion equation
$\frac{\partial \phi}{\partial t} = D \frac{\partial }{\partial z}(\phi^{4/5}(\frac{\partial \phi}{\partial z})^{2/5})$.
\\
\\
Experiments and computer simulations find differently.
12:00
17:00
Polyconvexity and counterexamples to regularity in the calculus of variations
Abstract
Using a technique explored in unpublished work of Ball and Mizel I shall
show that already in 2 and 3 dimensions there are vectorfields which are
singular minimizers of integral functionals whose integrand is strictly
polyconvex and depends on the gradient of the map only. The analysis behind
these results gives rise to an interesting question about the relationship
between the regularity of a polyconvex function and that of its possible
convex representatives. I shall indicate why this question is interesting in
the context of the regularity results above and I shall answer it in certain
cases.
17:00
15:45
Non-central limit theorems in geometric probability
Abstract
Consider a graph with n vertices placed randomly in the unit
square, each connected by an edge to its nearest neighbour in a
south-westerly direction. For many graphs of this type, the centred
total length is asymptotically normal for n large, but in the
present case the limit distribution is not normal, being defined in
terms of fixed-point distributions of a type seen more commonly in
the analysis of algorithms. We discuss related results. This is
joint work with Andrew Wade.
14:15
A particle representation for historical interacting Fisher-Wright diffusions and its applications
Abstract
We consider a system of interacting Fisher-Wright diffusions
which arise in population genetics as the diffusion limit of a spatial
particle model in which frequencies of genetic types are changing due to
migration and reproduction.
For both models the historical processes are constructed,
which record the family structure and the paths of descent through space.
For any fixed time, particle representations for the
historical process of a collection of Moran models with increasing particle
intensity and of the limiting interacting Fisher-Wright diffusions are
provided on one and the same probability space by means of Donnelly and
Kurtz's look-down construction.
It will be discussed how this can be used to obtain new
results on the long term behaviour. In particular, we give representations for
the equilibrium historical processes. Based on the latter the behaviour of
large finite systems in comparison with the infinite system is described on
the level of the historical processes.
The talk is based on joint work with Andreas Greven and Vlada
Limic.