Mon, 07 Nov 2022
13:00
L1

The holographic duals of Argyres--Douglas theories

Christopher Couzens
(Oxford )
Abstract

Argyres—Douglas (AD) theories are 4d N=2 SCFTs which have some unusual features, and until recently, explicit holographic duals of these theories were unknown. We will consider a concrete class of these theories obtained by wrapping the 6d N=(2,0) ADE theories on a (twice) punctured sphere: one irregular and one regular puncture, and construct their holographic duals. The novel aspects of these solutions require a relaxation of the regularity conditions of the usual Gaiotto—Maldacena framework and to allow for brane singularities. We show how to construct the dictionary between the AdS(5) solutions and the field theory and match observables between the two. If time allows, I will comment on some on-going work about further compactifying the AD theories on spindles, or the 6d theories on four-dimensional orbifolds. 

Fri, 04 Nov 2022

16:00 - 17:00
L1

Illustrating Mathematics

Joshua Bull and Christoph Dorn
Abstract

What should we be thinking about when we're making a diagram for a paper? How do we help it to express the right things? Or make it engaging? What kind of colour palette is appropriate? What software should we use? And how do we make this process as painless as possible? Join Joshua Bull and Christoph Dorn for a lively Fridays@4 session on illustrating mathematics, as they share tips, tricks, and their own personal experiences in bringing mathematics to life via illustrations.

Fri, 04 Nov 2022

15:00 - 16:00
L5

Dynamics of neural circuits at different scales

Jānis Lazovskis
(RTU Riga Business School)
Further Information

Jānis Lazovskis is an Assistant Professor at RTU Riga Business School in Riga, Latvia, working in algebraic topology and topological data analysis, in particular dynamic data. His research focuses on the intersection of topology and neuroscience, simplifying and classifying in silico activity with graph theoretic and topological tools. Previously Jānis worked as a postdoc in Ran Levi's group at Aberdeen, and completed his PhD under Ben Antieau at the University of Illinois at Chicago. As an instructor and administrator of undergraduate mathematics courses, Jānis pushes for more inclusion and equity through better teaching methods and modified assessments.

Abstract

Models of animal brains are increasingly common and mapped in increasing detail. To simplify analysis of their function, we consider subregions and show that they perform well as classifiers of overall activity, with only a fraction of the neurons. The uniqueness of such ''reliable'' regions seems to be related to the types of connections that pairs of neurons form in them. By focusing on topologically significant structures and reciprocally connected neurons we find even stronger classification results. This is ongoing work across several institutions, including EPFL, the Blue Brain Project, and the University of Aberdeen.

Fri, 04 Nov 2022

14:00 - 15:00
L5

Isostasy at the planetary scale

Mikael Beuthe
(Royal Observatory of Belgium)
Abstract

Isostasy is one of the earliest quantitative geophysical theories still in current use. It explains why observed gravity anomalies are generally much weaker than what is inferred from visible topography, and why planetary crusts can support large mountains without breaking up. At large scale, most topography (including bathymetry) is in isostatic equilibrium, meaning that surface loads are buoyantly supported by crustal thickness variations or density variations within the crust and lithosphere, in such a way that deeper layers are hydrostatic. On Earth, examples of isostasy are the average depth of the oceans, the elevation of the Himalayas, and the subsidence of ocean floor away from mid-ocean ridges, which are respectively attributed to the crust-ocean thickness difference, to crustal thickening under mountain belts, and to the density increase due to plate cooling. Outside Earth, isostasy is useful to constrain the crustal thickness of terrestrial planets and the shell thickness of icy moons with subsurface oceans.

Given the apparent simplicity of the isostatic concept – buoyant support of mountains by iceberg-like roots – it is surprising that a debate has been going on for over a century about its various implementations. Classical isostasy is indeed not self-consistent, neglects internal stresses and geoid contributions to topographical support, and yields ambiguous predictions of geoid anomalies at the planetary scale. In the last few years, these problems have attracted renewed attention when applying isostasy to planetary bodies with an unbroken crustal shell. In this talk I will discuss isostatic models based on the minimization of stress, on time-dependent viscous evolution, and on stationary viscous flow. I will show that these new isostatic approaches are mostly equivalent and discuss their implications for the structure of icy moons.

Fri, 04 Nov 2022

12:00 - 13:00
C4

Short Talks from Algebra PhD Students

Algebra DPhil Students
Further Information

A collection of bite-size 10-15 minute talks from current DPhil students in the Algebra group. The talks will be accessible to masters students and above.

With plenty of opportunity to chat to current students about what doing a PhD in algebra and representation theory is like!

Fri, 04 Nov 2022
10:00
L6

Cold start forecasting problems

Trevor Sidery
(Tesco)

Note: we would recommend to join the meeting using the Teams client for best user experience.

Abstract

As one of the largest retailers in the world, Tesco relies on automated forecasting to help with decision making. A common issue with forecasts is that of the cold start problem; that we must make forecasts for new products that have no history to learn from. Lack of historical data becomes a real problem as it prevents us from knowing how products react to events, and if their sales react to the time of year. We might consider using similar products as a way to produce a starting forecast, but how should we define what ‘similar’ means, and how should we evolve this model as we start getting real live data? We’ll present some examples to hopefully start a fruitful discussion.

Thu, 03 Nov 2022
16:00
Virtual

Signatures and Functional Expansions

Bruno Dupire
(Bloomberg)

Note: we would recommend to join the meeting using the Teams client for best user experience.

Further Information
Abstract

European option payoffs can be generated by combinations of hockeystick payoffs or of monomials. Interestingly, path dependent options can be generated by combinations of signatures, which are the building blocks of path dependence. We focus on the case of 1 asset together with time, typically the evolution of the price x as a function of the time t. The signature of a path for a given word with letters in the alphabet {t,x} (sometimes called augmented signature of dimension 1) is an iterated Stratonovich integral with respect to the letters of the word and it plays the role of a monomial in a Taylor expansion. For a given time horizon T the signature elements associated to short words are contained in the linear space generated by the signature elements associated to longer words and we construct an incremental basis of signature elements. It allows writing a smooth path dependent payoff as a converging series of signature elements, a result stronger than the density property of signature elements from the Stone-Weierstrass theorem. We recall the main concepts of the Functional Itô Calculus, a natural framework to model path dependence and draw links between two approximation results, the Taylor expansion and the Wiener chaos decomposition. The Taylor expansion is obtained by iterating the functional Stratonovich formula whilst the Wiener chaos decomposition is obtained by iterating the functional Itô formula applied to a conditional expectation. We also establish the pathwise Intrinsic Expansion and link it to the Functional Taylor Expansion.

Thu, 03 Nov 2022
16:00
L5

Brauer groups of surfaces defined by pairs of polynomials

Damián Gvirtz-Chen
Abstract

It is known that the Brauer group of a smooth, projective surface
defined by an equality of two homogeneous polynomials in characteristic 0, is
finite up to constants. I will report on new methods to determine these Brauer
groups, or at least their algebraic parts, as long as the coefficients are in a
certain sense generic. This generalises previous results obtained over the
years by Colliot-Thélène--Kanevsky--Sansuc, Bright, Uematsu and Santens.
(Joint work with A. N. Skorobogatov.)

Thu, 03 Nov 2022

16:00 - 17:00
L3

Decentralised Finance and Automated Market Making: Optimal Execution and Liquidity Provision

Fayçal Drissi
Abstract

Automated Market Makers (AMMs) are a new prototype of 
trading venues which are revolutionising the way market participants 
interact. At present, the majority of AMMs are Constant Function 
Market Makers (CFMMs) where a deterministic trading function 
determines how markets are cleared. A distinctive characteristic of 
CFMMs is that execution costs for liquidity takers, and revenue for 
liquidity providers, are given by closed-form functions of price, 
liquidity, and transaction size. This gives rise to a new class of 
trading problems. We focus on Constant Product Market Makers with 
Concentrated Liquidity and show how to optimally take and make 
liquidity. We use Uniswap v3 data to study price and liquidity 
dynamics and to motivate the models.

For liquidity taking, we describe how to optimally trade a large 
position in an asset and how to execute statistical arbitrages based 
on market signals. For liquidity provision, we show how the wealth 
decomposes into a fee and an asset component. Finally, we perform 
consecutive runs of in-sample estimation of model parameters and 
out-of-sample trading to showcase the performance of the strategies.

Thu, 03 Nov 2022

15:00 - 16:00
L5

Model-theoretic Algebraic Closure in Zilber’s Field

Vahagn Aslanyan
(Leeds University)
Abstract

I will explain how the model-theoretic algebraic closure in Zilber’s pseudo-exponential field can be described in terms of the self-sufficient closure. I will sketch a proof and show how the Mordell-Lang conjecture for algebraic tori comes into play. If time permits, I’ll also talk about the characterisation of strongly minimal sets and their geometries. This is joint work (still in progress) with Jonathan Kirby.

Thu, 03 Nov 2022

14:00 - 15:00
L3

Algebraic Spectral Multilevel Domain Decomposition Preconditioners

Hussam Al Daas
(STFC Rutherford Appleton Laboratory)
Abstract

Solving sparse linear systems is omnipresent in scientific computing. Direct approaches based on matrix factorization are very robust, and since they can be used as a black-box, it is easy for other software to use them. However, the memory requirement of direct approaches scales poorly with the problem size, and the algorithms underpinning sparse direct solvers software are poorly suited to parallel computation. Multilevel Domain decomposition (MDD) methods are among the most efficient iterative methods for solving sparse linear systems. One of the main technical difficulties in using efficient MDD methods (and most other efficient preconditioners) is that they require information from the underlying problem which prohibits them from being used as a black-box. This was the motivation to develop the widely used algebraic multigrid for example. I will present a series of recently developed robust and fully algebraic MDD methods, i.e., that can be constructed given only the coefficient matrix and guarantee a priori prescribed convergence rate. The series consists of preconditioners for sparse least-squares problems, sparse SPD matrices, general sparse matrices, and saddle-point systems. Numerical experiments illustrate the effectiveness, wide applicability, scalability of the proposed preconditioners. A comparison of each one against state-of-the-art preconditioners is also presented.

Thu, 03 Nov 2022
13:45
N3.12

Uniqueness of supersymmetric AdS$_5$ black holes

Sergei G. Ovchinnikov
(Edinburgh University)
Abstract

The classification of anti de Sitter black holes is an open problem of central importance in holography. In this talk, I will present new advances in classification of supersymmetric solutions to five-dimensional minimal gauged supergravity. In particular, we prove a black hole uniqueness theorem within a ‘Calabi-type’ subclass of solutions with biaxial symmetry. This subclass includes all currently known black hole solutions within this theory.

Thu, 03 Nov 2022

12:00 - 13:00
L1

Wave scattering by fractals

Prof. David Hewett
(University College London)
Further Information

Dave Hewett is Associate Professor in Mathematics at University College London (UCL), and an OCIAM Visiting Fellow. His research interests centre on the applied, numerical and asymptotic analysis of wave scattering problems, including high frequency scattering and scattering by non-smooth (e.g. fractal) obstacles.

Abstract

The applied, numerical and asymptotic analysis of acoustic, electromagnetic and elastic scattering by smooth scatterers (e.g. a cylinder or a sphere) is a classical topic in applied mathematics. However, many real-world applications involve highly non-smooth scatterers with geometric structure on multiple length scales. Examples include acoustic scattering by trees and other vegetation in the modelling of urban noise propagation, electromagnetic scattering by snowflakes and ice crystal aggregates in climate modelling and weather prediction, and elastic scattering by cracks and other interfaces in seismic imaging and hydrocarbon exploration. In such situations it may be more appropriate to model the scatterer not by a smooth surface but by a fractal, a geometric object with self-similarity properties and detail on every length scale. Well-known examples include the Cantor set, Sierpinski triangle and the Koch snowflake. In this talk I will give an overview of our recent research into acoustic scattering by such fractal structures. So far our work has focussed on establishing well-posedness of the scattering problem and integral equation reformulations of it, and developing and analysing numerical methods for obtaining approximate solutions. However, there remain interesting open questions about the high frequency (short wavelength) asymptotic behaviour of solutions, and whether the self-similarity of the scatterer can be exploited to derive more efficient approximation techniques.

Wed, 02 Nov 2022
17:00
Lecture Theatre 1, Mathematical Institute, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG

Signatures of Streams - Professor Terry Lyons

Terry Lyons
Further Information

A calculator processes numbers without caring that these numbers refer to items in our shopping, or the calculations involved in designing an airplane. Number without context is a remarkable abstraction that we learn as infants and which has profoundly affected our world.

Our lives start, progress in complex ways, and are finally complete. So do tasks executed on a computer. Multimodal streams are a pervasive “type”, and even without fixing the context, have a rich structure. Developing this structure leads to wide-ranging tools that have had award-winning impact on methodology in health care, finance, and computer technology.

Terry Lyons is Professor of Mathematics in Oxford and a Fellow of St Anne's CollegeHis research is supported through the DataSig and Cimda-Oxford programmes.

Please email @email to register.

The lecture will be available on our Oxford Mathematics YouTube Channel on 09 November at 5 pm.

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Wed, 02 Nov 2022
16:00
L4

Separability of products in relatively hyperbolic groups

Lawk Mineh
(University of Southampton)
Abstract

Separability is an algebraic property enjoyed by certain subsets of groups. In the world of non-positively curved groups, it has a not-too-well-understood link to geometric properties such as convexity. We explore this connection in the setting of relatively hyperbolic groups and discuss a recent joint work in this area involving products of quasiconvex subgroups.

Tue, 01 Nov 2022
16:00
C1

The noncommutative factor theorem for higher rank lattices

Cyril Houdayer
(Université Paris-Saclay, Orsay)
Abstract

In this talk, I will present a noncommutative analogue of Margulis’ factor theorem for higher rank lattices. More precisely, I will give a complete description of all intermediate von Neumann subalgebras sitting between the von Neumann algebra of the lattice and the von Neumann algebra of the action of the lattice on the Furstenberg-Poisson boundary. As an application, we infer that the rank of the semisimple Lie group is an invariant of the pair of von Neumann algebras. I will explain the relevance of this result regarding Connes’ rigidity conjecture.

Tue, 01 Nov 2022

15:30 - 16:30
L6

Entanglement negativity and mutual information after a quantum quench: Exact link from space-time duality

Katja Klobas
(University of Nottingham)
Abstract

I will present recent results on the growth of entanglement between two adjacent regions in a tripartite, one-dimensional many-body system after a quantum quench. Combining a replica trick with a space-time duality transformation a universal relation between the entanglement negativity and Renyi-1/2 mutual information can be derived, which holds at times shorter than the sizes of all subsystems. The proof is directly applicable to any local quantum circuit, i.e., any lattice system in discrete time characterised by local interactions, irrespective of the nature of its dynamics. The derivation indicates that such a relation can be directly extended to any system where information spreads with a finite maximal velocity. The talk is based on Phys. Rev. Lett. 129, 140503 (2022).

Tue, 01 Nov 2022
15:00
L5

Thickness and relative hyperbolicity for graphs of multicurves

Kate Vokes
Abstract

Various graphs associated to surfaces have proved to be important tools for studying the large scale geometry of mapping class groups of surfaces, among other applications. A seminal paper of Masur and Minsky proved that perhaps the most well known example, the curve graph, is Gromov hyperbolic. However, this is not the case for every naturally defined graph associated to a surface. We will present joint work with Jacob Russell classifying a wide family of graphs associated to surfaces according to whether the graph is Gromov hyperbolic, relatively hyperbolic or not relatively hyperbolic.
 

Tue, 01 Nov 2022
14:00
C3

Large network community detection by fast label propagation

Dr. Vincent Traag
(Leiden University)
Abstract

Many networks exhibit some community structure. There exists a wide variety of approaches to detect communities in networks, each offering different interpretations and associated algorithms. For large networks, there is the additional requirement of speed. In this context, the so-called label propagation algorithm (LPA) was proposed, which runs in near linear time. In partitions uncovered by LPA, each node is ensured to have most links to its assigned community. We here propose a fast variant of LPA (FLPA) that is based on processing a queue of nodes whose neighbourhood recently changed. We test FLPA exhaustively on benchmark networks and empirical networks, finding that it runs up to 700 times faster than LPA. In partitions found by FLPA, we prove that each node is again guaranteed to have most links to its assigned community. Our results show that FLPA is generally preferable to LPA.

Tue, 01 Nov 2022

14:00 - 15:00
L5

Generating random regular graphs quickly

Oliver Riordan
(Oxford University)
Abstract

A random $d$-regular graph is just a $d$-regular simple graph on $[n]=\{1,2,\ldots,n\}$ chosen uniformly at random from all such graphs. This model, with $d=d(n)$, is one of the most natural random graph models, but is quite tricky to work with/reason about, since actually generating such a graph is not so easy. For $d$ constant, Bollobás's configuration model works well; for larger $d$ one can combine this with switching arguments pioneered by McKay and Wormald. I will discuss recent progress with Nick Wormald, pushing linear-time generation up to $d=o(\sqrt{n})$. One ingredient is reciprocal rejection sampling, a trick for 'accepting' a certain graph with a probability proportional to $1/N(G)$, where $N(G)$ is the number of certain configurations in $G$. The trick allows us to do this without calculating $N(G)$, which would take too long.

Tue, 01 Nov 2022

14:00 - 15:00
L3

HiGHS: From gradware to software and Impact

Dr Julian Hall
(University of Edinburgh)
Abstract

HiGHS is open-source optimization software for linear programming, mixed-integer programming, and quadratic programming. Created initially from research solvers written by Edinburgh PhD students, HiGHS attracted industrial funding that allowed further development, and saw it contribute to a REF 2021 Impact Case Study. Having been identified as a game-changer by the open-source energy systems planning community, the resulting crowdfunding campaign has received large donations that will allow the HiGHS project to expand and create further Impact.

This talk will give an insight into the state-of-the-art techniques underlying the linear programming solvers in HiGHS, with a particular focus on the challenge of solving sequences of linear systems of equations with remarkable properties. The means by which "gradware" created by PhD students has been transformed into software, generating income and Impact, will also be described. Independent benchmark results will be given to demonstrate that HiGHS is the world’s best open-source linear optimization software.

 

Tue, 01 Nov 2022
14:00
L6

Primitive ideals and W-algebras

Lewis Topley
(Bath University)
Abstract

A finite W-algebra is a gadget associated to each nilpotent orbit in a complex semisimple Lie algebra g. There is a functor from W-modules to a full subcategory of g-modules, known as Skryabin’s equivalence, and every primitive ideals of the enveloping algebra U(g) as the annihilator of a module obtained in this way. This gives a convenient way of organising together primitive ideals in terms of nilpotent orbits, and this approach has led to a resurgence of interest in some hard open problems which lay dormant for some 20 years. The primitive ideals of U(g) which come from one-dimensional representations of W-algebras are especially nice, and we shall call them Losev—Premet ideals. The goal of this talk is to explain my recent work which seeks to: (1) describe the structure of the space of the dimensional representations of a finite W-algebra and (2) classify the Losev—Premet ideals.

Tue, 01 Nov 2022

12:30 - 13:00
C3

Asymptotic Analysis of Deep Residual Networks

Alain Rossier
Abstract

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation (SDE) or neither of these. Furthermore, we are able to formally prove the linear convergence of gradient descent to a global optimum for the training of deep residual networks with constant layer width and smooth activation function. We further prove that if the trained weights, as a function of the layer index, admit a scaling limit as the depth increases, then the limit has finite 2-variation.

Mon, 31 Oct 2022
15:30
L5

The Landau-Ginzburg – Conformal Field Theory Correspondence and Module Tensor Categories

Thomas Wassermann
Abstract

In this talk, I will first give a brief introduction to the Landau-Ginzburg -- Conformal Field Theory (LG-CFT) correspondence, a prediction from physics. This prediction links aspects of Landau-Ginzburg models, described by matrix factorisations for a polynomial known as the potential, with Conformal Field Theories, described by for example vertex operator algebras. While both sides of the correspondence have good mathematical descriptions, it is an open problem to give a mathematical formulation of the correspondence. 

After this introduction, I will discuss the only known realisation of this correspondence, for the potential $x^d$. For even $d$ this is a recent result, and I will give a sketch of the proof which uses the tools of module tensor categories

 I will not assume prior knowledge of matrix factorisations, CFTs, or module tensor categories. This talk is based on joint work with Ana Ros Camacho.