Fri, 27 May 2022

14:00 - 15:00
L6

Coping with mechanical stress: tissue dynamics in development and repair

Prof Yanlan Mao
(Laboratory for Molecular Cell Biology UCL)
Abstract

During growth and development, tissue dynamics, such as tissue folding, cell intercalations and oriented cell divisions, are critical for shaping tissues and organs. However, less is known about how tissues regulate their dynamics during tissue homeostasis and repair, to maintain their shape after development. In this talk, we will discuss how differential growth rates can generate precise folds in tissues. We will also discuss how tissues respond to mechanical perturbations, such as stretching or wounding, by altering their actomyosin contractile structures, to change tissue dynamics, and thus preserve tissue shape and patterning. We combine genetics, biophysics and computational modelling to study these processes.

Fri, 27 May 2022

14:00 - 15:00
N3.12

Branching of representations of symmetric groups and Hecke algebras

Arun Soor
(University of Oxford)
Abstract

We will look at the branching of irreducible representations of symmetric groups from the perspective of Okounkov-Vershik, and then look at Hecke algebras, affine Hecke algebras and cyclotomic Hecke algebras, in particular how the graded Grothendieck groups of their module categories “are” irreducible highest weight modules for affine $sl_l$, where $l$ is the “quantum characteristic”, and the branching graph is a highest weight crystal (for affine $sl_l$). The Fock space realisation of the highest weight crystal will get us back to  the Young graph for in the case of the symmetric group that we considered at the beginning.

Fri, 27 May 2022

10:00 - 11:00
L4

Inference of risk-neutral joint-distributions in commodity markets using neural-networks

Andy Ho, Vincent Guffens
(Macquarie Group(1585))
Abstract

The questions we would like to answer are as follows:

  1. Given three distributions pdf1, pdf2 and pdf-so, is it always possible to find a joint-distribution consistent with those 3 one-dimensional distributions?
  2. Assuming that we are in a situation where (1) holds, can we find a nonparametric joint-distribution consistent with the 3 given one-dimensional distributions?
  3. If (2) leads to an under-determined problem, can we find a joint-distribution that is “as close as possible” to the historical joint distribution?
  4. Can we achieve (3) with a neural network?
  5. If we observe the marginal and spread distributions for multiple maturities T, can we specify the evolution of pdf(T), possibly using neural differential equations?
Thu, 26 May 2022

17:00 - 18:00
Online

The Cauchy problem for the ternary interaction of impulsive gravitational waves

Maxime Van de Moortel
(Princeton University)
Further Information

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact Benjamin Fehrman.

Abstract

In General Relativity, an impulsive gravitational wave is a localized and singular solution of the 

Einstein equations modeling the spacetime distortions created by a strongly gravitating source.
I will present a comprehensive theory allowing for ternary interactions of such impulsive gravitational waves in translation-symmetry, offering the first examples of such an interaction.  

The proof combines new techniques from harmonic analysis, Lorentzian geometry, and hyperbolic PDEs that are helpful to treat highly anisotropic low-regularity questions beyond the considered problem.  

This is joint work with Jonathan Luk.

Thu, 26 May 2022

16:00 - 17:00
L5

Arithmetic statistics via graded Lie algebras

Jef Laga
(University of Cambridge)
Abstract

I will explain how various results in arithmetic statistics by Bhargava, Gross, Shankar and others on 2-Selmer groups of Jacobians of (hyper)elliptic curves can be organised and reproved using the theory of graded Lie algebras, following earlier work of Thorne. This gives a uniform proof of these results and yields new theorems for certain families of non-hyperelliptic curves. I will also mention some applications to rational points on certain families of curves.

Thu, 26 May 2022

16:00 - 17:00
Virtual

Tensor Product Kernels for Independence

Zoltan Szabo
(London School of Economics)
Further Information
Abstract

Hilbert-Schmidt independence criterion (HSIC) is among the most widely-used approaches in machine learning and statistics to measure the independence of random variables. Despite its popularity and success in numerous applications, quite little is known about when HSIC characterizes independence. I am going to provide a complete answer to this question, with conditions which are often easy to verify in practice.

This talk is based on joint work with Bharath Sriperumbudur.

Thu, 26 May 2022

14:00 - 15:30
L6

BV Formalism

Sujar Nair
((Oxford University))
Abstract
Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.
Thu, 26 May 2022

14:00 - 15:00
L3

Propagation and stability of stress-affected transformation fronts in solids

Mikhail Poluektov
(University of Warwick)
Abstract

There is a wide range of problems in continuum mechanics that involve transformation fronts, which are non-stationary interfaces between two different phases in a phase-transforming or a chemically-transforming material. From the mathematical point of view, the considered problems are represented by systems of non-linear PDEs with discontinuities across non-stationary interfaces, kinetics of which depend on the solution of the PDEs. Such problems have a significant industrial relevance – an example of a transformation front is the localised stress-affected chemical reaction in Li-ion batteries with Si-based anodes. Since the kinetics of the transformation fronts depends on the continuum fields, the transformation front propagation can be decelerated and even blocked by the mechanical stresses. This talk will focus on three topics: (1) the stability of the transformation fronts in the vicinity of the equilibrium position for the chemo-mechanical problem, (2) a fictitious-domain finite-element method (CutFEM) for solving non-linear PDEs with transformation fronts and (3) an applied problem of Si lithiation.

Thu, 26 May 2022

11:30 - 12:45
L6

Axiomatizing the existential theory of $F_p((t))$

Arno Fehm
(TU Dresden)
Abstract

From a model theoretic point of view, local fields of positive characteristic, i.e. fields of Laurent series over finite fields, are much less well understood than their characteristic zero counterparts - the fields of real, complex and p-adic numbers. I will discuss different approaches to axiomatize and decide at least their existential theory in various languages and under various forms of resolution of singularities. This includes new joint work with Sylvy Anscombe and Philip Dittmann.

Wed, 25 May 2022

16:00 - 17:00
L5

Pseudo-Anosov flows on 3-manifolds

Anna Parlak
Abstract

This will be a gentle introduction to the theory of pseudo-Anosov  flows on 3-manifolds, as seen from the perspective of a topologist and not a dynamicist.

I will start by considering geodesic flows on the unit tangent bundles of hyperbolic surfaces. This will lead to a definition of an Anosov and then a pseudo-Anosov flow on a 3-manifold. After discussing a couple of examples, I will outline some connections between pseudo-Anosov flows and other aspects of 3-manifold topology/ geometry/ group theory.

Wed, 25 May 2022

14:00 - 15:00
L5

Topological Orders and Higher Fusion Categories

Thibault Décoppet
(Oxford)
Abstract

The notion of topological order was introduced by Xiao-Gang Wen in order to capture the features of the exotic phases of matter given by fractional quantum Hall phases. I will motivate why the corresponding mathematical structures are higher categories with additional properties. In 2+1-dimensions, I will explain in details how the definition of fusion category arises from physical and geometrical intuitions about topological orders. Finally, I will sketch how the notion of higher fusion category emerges in higher dimensions.

Tue, 24 May 2022

15:30 - 16:30
L3

Moment Polyptychs and the Equivariant Quantisation of Hypertoric Varieties

Ben Brown
(Edinburgh)
Abstract

We develop a method to investigate the geometric quantisation of a hypertoric variety from an equivariant viewpoint, in analogy with the equivariant Verlinde for Higgs bundles. We do this by first using the residual circle action on a hypertoric variety to construct its symplectic cut, resulting in a compact cut space which is needed for localisation. We introduce the notion of a moment polyptych associated to a hypertoric variety and prove that the necessary isotropy data can be read off from it. Finally, the equivariant Hirzebruch-Riemann-Roch formula is applied to the cut spaces and expresses the dimension of the equivariant quantisation space as a finite sum over the fixed-points. This is joint work with Johan Martens.

Tue, 24 May 2022

15:30 - 16:30
L6

On centralizers in Azumaya domains

Thomas Bitoun
(University of Calgary)
Abstract

We prove a positive characteristic analogue of the classical result that the centralizer of a nonconstant differential operator in one variable is commutative. This leads to a new, short proof of that classical characteristic zero result, by reduction modulo p. This is joint work with Justin Desrochers available at https://arxiv.org/abs/2201.04606.

Tue, 24 May 2022

15:30 - 16:30
L5

Correlations of the Riemann Zeta on the critical line

Valeriya Kovaleva
(University of Oxford)
Further Information

Note the unusual venue.

Abstract

In this talk we will discuss the correlations of the Riemann Zeta in various ranges, and prove a new result for correlations of squares. This problem is closely related to correlations of the characteristic polynomial of CUE with a very subtle difference. We will explain where this difference comes from, and what it means for the moments of moments of the Riemann Zeta, and its maximum in short intervals.

Tue, 24 May 2022

14:00 - 15:00
L3

Size-Ramsey numbers of graphs with maximum degree three

Nemanja Draganić
(ETH Zurich)
Abstract

The size-Ramsey number $\hat{r}(H)$ of a graph $H$ is the smallest number of edges a (host) graph $G$ can have, such that for any red/blue coloring of $G$, there is a monochromatic copy of $H$ in $G$. Recently, Conlon, Nenadov and Trujić showed that if $H$ is a graph on $n$ vertices and maximum degree three, then $\hat{r}(H) = O(n^{8/5})$, improving upon the bound of $n^{5/3 + o(1)}$ by Kohayakawa, Rödl, Schacht and Szemerédi. In our paper, we show that $\hat{r}(H)\leq n^{3/2+o(1)}$. While the previously used host graphs were vanilla binomial random graphs, we prove our result by using a novel host graph construction.
We also discuss why our bound is a natural barrier for the existing methods.
This is joint work with Kalina Petrova.

Tue, 24 May 2022

14:00 - 15:00
L5

Dirac index and associated cycles for Harish-Chandra modules

Salah Mehdi
(Université de Lorraine)
Abstract

Since their introduction in 1928 by Paul A. Dirac, Dirac operators have been playing essential roles in many areas of Physics and Mathematics. In particular, they provide powerful and efficient tools to clarify (and sometimes solve) important problems in representation theory of real Lie groups, p-adic groups or Hecke algebras, such as classification, unitarity and geometric realization. In this representation theoretic context, the Dirac index of a Harish-Chandra module is a virtual module induced by Vogan’s Dirac cohomology. Once we observe that Dirac index commutes with translation functors, we will associate a polynomial (on a Cartan subalgebra) with a coherent family of Harish-Chandra modules. Then we shall explain how this polynomial can be used to connect nilpotent orbits, associated cycles and the leading term of the Taylor expansion of the characters of Harish-Chandra modules. This is joint wok with P. Pandzic, D. Vogan and R. Zierau.
 

Tue, 24 May 2022

14:00 - 15:00
C6

A Mechanism for the Emergence of Chimera States

Adilson Motter
(Northwestern University)
Abstract

Chimera states have attracted significant attention as symmetry-broken states exhibiting the coexistence of coherence and incoherence. Despite the valuable insights gained by analyzing specific systems, the understanding of the physical mechanism underlying the emergence of chimeras has been incomplete. In this presentation, I will argue that an important class of stable chimeras arise because coherence in part of the system is sustained by incoherence in the rest of the system. This mechanism may be regarded as a deterministic analog of noise-induced synchronization and is shown to underlie the emergence of so-called strong chimeras. These are chimera states whose coherent domain is formed by identically synchronized oscillators. The link between coherence and incoherence revealed by this mechanism also offers insights into the dynamics of a broader class of states, including switching chimera states and incoherence-mediated remote synchronization.

Tue, 24 May 2022

10:00 - 12:00
L3

Regularity Theory of Spaces with Lower Ricci Curvature Bounds

Daniele Semola
(Oxford University)
Further Information

Aimed at: people interested on Geometric Analysis, Geometric Measure Theory and regularity theory in Partial Differential Equations.

Prerequisites: Riemannian and Differential Geometry, Metric spaces, basic knowledge of Partial Differential Equations.


Outline of the course:

  • Lecture 1:
    • Quick introduction to non-smooth spaces with lower Ricci curvature bounds [1, 23, 20, 17];
    • Basic properties of spaces with lower Ricci bounds: Bishop-Gromov inequality and doubling metric measure spaces, Bochner’s inequality, splitting theorem [19, 22];
    • Convergence and stability: Gromov-Hausdorff convergence, Gromov pre-compactness theorem, stability and tangent cones [19, 22];
  • Lecture 2:
    • Functional form of the splitting theorem via splitting maps;
    • δ-splitting maps and almost splitting theorem [5, 7];
    • Definition of metric measure cone, stability of RCD property for cones [16];
    • Functional form of the volume cone implies metric cone [12];
    • Almost volume cone implies almost metric cone via stability.
  • Lecture 3:
    • Maximal function type arguments;
    • Existence of Euclidean tangents;
    • Rectifiability and uniqueness of tangents at regular points [18];
    • Volume convergence [9, 13];
    • Tangent cones are metric cones on noncollapsed spaces [5, 6, 13].
  • Lecture 4:
    • Euclidean volume rigidity [9, 6, 13];
    • ε-regularity and classical Reifenberg theorem [6, 15, 7];
    • Harmonic functions on metric measure cones, frequency and separation of variables [7];
    • Transformation theorem for splitting maps [7];
    • Proof of canonical Reifenberg theorem via harmonic splitting maps [7].
  • Lecture 5:
    • Regular and singular sets [6, 13];
    • Stratification of singular sets [6, 13];
    • Examples of singular behaviours [10, 11];
    • Hausdorff dimension bounds via Federer’s dimension reduction [6, 13];
    • Quantitative stratification of singular sets [8];
    • An introduction to quantitative differentiation [3];
    • Cone splitting principle [8];
    • Quantitative singular sets and Minkowski content bounds [8].
  • Lecture 6:
    • The aim of this lecture is to give an introduction to the most recent developments of the regularity theory for non collapsed Ricci limit spaces. We will introduce the notion of neck region in this context and then outline how they have been used to prove rectifiability of singular sets in any codimension for non collapsed Ricci limit spaces by Cheeger-Jiang-Naber [7].
Abstract

The aim of this course is to give an introduction to the regularity theory of non-smooth spaces with lower bounds on the Ricci Curvature. This is a quickly developing field with motivations coming from classical questions in Riemannian and differential geometry and with connections to Probability, Geometric Measure Theory and Partial Differential Equations.


In the lectures we will focus on the non collapsed case, where much sharper results are available, mainly adopting the synthetic approach of the RCD theory, rather than following the original proofs.


The techniques used in this setting have been applied successfully in the study of Minimal surfaces, Elliptic PDEs, Mean curvature flow and Ricci flow and the course might be of interest also for people working in these subjects.

Mon, 23 May 2022

16:30 - 17:30
L5

Implosion mechanisms for compressible fluids with applications

Pierre Raphael
(University of Cambridge)
Abstract

I will review the series of recent results with Merle (IHES), Rodnianski (Princeton) and Szeftel (Paris Sorbonne) concerning the description of implosion mechanisms for viscous three dimensional compressible fluids. I will explain how the problem is connected to the description of blow up mechanisms for classical super critical defocusing models. 

Mon, 23 May 2022

16:00 - 17:00
C1

TBA

TBA
Mon, 23 May 2022

15:30 - 16:30
L2

"Constructing global solutions to energy supercritical PDEs"

MOUHAMADOU SY
((Imperial College, London))
Abstract

 "In this talk, we will discuss invariant measures techniques to establish probabilistic global well-posedness for PDEs. We will go over the limitations that the Gibbs measures and the so-called fluctuation-dissipation measures encounter in the context of energy-supercritical PDEs. Then, we will present a new approach combining the two aforementioned methods and apply it to the energy supercritical Schrödinger equations. We will point out other applications as well."

Mon, 23 May 2022

15:30 - 16:30
L5

Product set growth in mapping class groups

Alice Kerr
(Oxford)
Abstract

A standard question in group theory is to ask if we can categorise the subgroups of a group in terms of their growth. In this talk we will be asking this question for uniform product set growth, a property that is stronger than the more widely understood notion of uniform exponential growth. We will see how considering acylindrical actions on hyperbolic spaces can help us, and give a particular application to mapping class groups.

 

Mon, 23 May 2022
14:15
L5

Ancient solutions and translators in Lagrangian mean curvature flow

Felix Schulze
(University of Warwick)
Abstract

For almost calibrated Lagrangian mean curvature flow it is known that all singularities are of Type II. To understand the finer structure of the singularities forming, it is thus necessary to understand the structure of general ancient solutions arising as potential limit flows at such singularities. We will discuss recent progress showing that ancient solutions with a blow-down a pair of static planes meeting along a 1-dimensional line are translators. This is joint work with J. Lotay and G. Szekelyhidi.

Fri, 20 May 2022

16:00 - 17:00
L5

Non-Invertible Symmetries from Discrete Gauging and Completeness of the Spectrum

Guillermo Arias-Tamargo
(Oviedo)
Abstract

We study global 1- and (d−2)-form symmetries for gauge theories based on disconnected gauge groups which include charge conjugation. For pure gauge theories, the 1-form symmetries are shown to be non-invertible. In addition, being the gauge groups disconnected, the theories automatically have a Z2
global (d−2)-form symmetry. We propose String Theory embeddings for gauge theories based on these groups. Remarkably, they all automatically come with twist vortices which break the (d−2)-form global symmetry. 

Fri, 20 May 2022

16:00 - 18:30
L1

Guest Speakers Seminar

Prof. Luis Caffarelli and Prof. Irene Gamba
(University of Texas at Austin)
Further Information

Event Timings:

16:00 – 16:10 Refreshments (Served in the North Mezzanine)

16:10 – 17:10  Talk by Prof. Luis Caffarelli

17:10 – 17:30 Refreshments Break (20mins - Served in the North Mezzanine)

17:30 – 18:30 Talk by Prof Irene Martínez Gamba

Each talk will have a Q&A afterwards.

Register your interest HERE

Abstract

 

 

Title: Topics on regularity theory for fully non-linear integro-differential equations

Abstract: We will focus on local and non-local Monge Ampere type equations, equations with deforming kernels and convex envelopes of functions with optimal special conditions. We discuss global solutions and their regularity properties.

 

Title: Quasilinear Conservative Collisional Transport in Kinetic Mean Field models

AbstractWe shall focus the on the interplay of nonlinear analysis  and numerical approximations to mean field models in particle physics where kinetic transport flows in momentum are strongly nonlinearly  modified by macroscopic quantities in classical or spectral density spaces. Two noteworthy models arise: the classical Fokker-Plank Landau dynamics as a low magnetized plasma regimes in the modeling of perturbative non-local high order terms. The other one corresponds to perturbation under strongly magnetized dynamics for fast electrons  in momentum space  give raise to a coupled system of classical kinetic diffusion processes described by the balance equations for electron probability density functions (electron pdf) coupled to the time dynamics on spectral energy waves  (quasi-particles) in a quantum process of their resonant interaction. Both models are rather different, yet there are derived form the Liouville-Maxwell system under different scaling. Analytical tools and some numerical  simulations show a presence of  strong hot tail anisotropy  formation taking the stationary states away from Classical equilibrium solutions stabilization for the iteration in a three dimensional cylindrical model. The semi-discrete schemes preserves the total system mass, momentum and energy, which are enforced by the numerical scheme. Error estimates can be obtained as well.

Work in collaboration with Clark Pennie and Kun Huang