Thu, 28 Apr 2022

14:00 - 15:00
L3

An SDP approach for tensor product approximation of linear operators on matrix spaces

Andre Uschmajew
(Max Planck Institute Leipzig)
Abstract

Tensor structured linear operators play an important role in matrix equations and low-rank modelling. Motivated by this we consider the problem of approximating a matrix by a sum of Kronecker products. It is known that an optimal approximation in Frobenius norm can be obtained from the singular value decomposition of a rearranged matrix, but when the goal is to approximate the matrix as a linear map, an operator norm would be a more appropriate error measure. We present an alternating optimization approach for the corresponding approximation problem in spectral norm that is based on semidefinite programming, and report on its practical performance for small examples.
This is joint work with Venkat Chandrasekaran and Mareike Dressler.

Thu, 28 Apr 2022

12:00 - 13:00
L1

Modeling and Design Optimization for Pleated Membrane Filters

Yixuan Sun & Zhaohe Dai
(Mathematical Institute (University of Oxford))
Abstract

Statics and dynamics of droplets on lubricated surfaces

Zhaohe Dai

The abstract is "Slippery liquid infused porous surfaces are formed by coating surface with a thin layer of oil lubricant. This thin layer prevents other droplets from reaching the solid surface and allows such deposited droplets to move with ultra-low friction, leading to a range of applications. In this talk, we will discuss the static and dynamic behaviour of droplets placed on lubricated surfaces. We will show that the layer thickness and the size of the substrate are key parameters in determining the final equilibrium. However, the evolution towards the equilibrium is extremely slow (on the order of days for typical experimental parameter values). As a result, we suggest that most previous experiments with oil films lubricating smooth substrates are likely to have been in an evolving, albeit slowly evolving, transient state.

 

Modeling and Design Optimization for Pleated Membrane Filters

Yixuan Sun

Membrane filtration is widely used in many applications, ranging from industrial processes to everyday living activities. With growing interest from both industrial and academic sectors in understanding the various types of filtration processes in use, and in improving filter performance, the past few decades have seen significant research activity in this area. Experimental studies can be very valuable, but are expensive and time-consuming, therefore theoretical studies offer potential as a cost-effective and predictive way to improve on current filter designs. In this work, mathematical models, derived from first principles and simplified using asymptotic analysis, are proposed for pleated membrane filters, where the macroscale flow problem of Darcy flow through a pleated porous medium is coupled to the microscale fouling problem of particle transport and deposition within individual pores of the membrane. Asymptotically-simplified models are used to describe and evaluate the membrane performance numerically and filter design optimization problems are formulated and solved for industrially-relevant scenarios. This study demonstrates the potential of such modeling to guide industrial membrane filter design for a range of applications involving purification and separation.

Wed, 27 Apr 2022

16:00 - 17:00
L6

Embeddings of Trees and Solvable Baumslag-Solitar Groups

Patrick Nairne
(University of Oxford)
Abstract

The question of when you can quasiisometrically embed a solvable Baumslag-Solitar group into another turns out to be equivalent to the question of when you can (1,A)-quasiisometrically embed a rooted tree into another rooted tree. We will briefly describe the geometry of the solvable Baumslag-Solitar groups before attacking the problem of embedding trees. We will find that the existence of (1,A)-quasiisometric embeddings between trees is intimately related to the boundedness of a family of integer sequences. 

Wed, 27 Apr 2022

14:00 - 15:00
Virtual

Kazhdan-Lusztig Equivalence at the Iwahori Level

Yuchen Fu
(Harvard)
Abstract
We construct an equivalence between Iwahori-integrable representations of affine Lie algebras and representations of the "mixed" quantum group, thus confirming a conjecture by Gaitsgory. Our proof utilizes factorization methods: we show that both sides are equivalent to algebraic/topological factorization modules over a certain factorization algebra, which can then be compared via Riemann-Hilbert. On the quantum group side this is achieved via general machinery of homotopical algebra, whereas the affine side requires inputs from the theory of (renormalized) ind-coherent sheaves as well as compatibility with global geometric Langlands over P1. This is joint work with Lin Chen.
 
Tue, 26 Apr 2022

15:30 - 16:30
L6

Emergent random matrix behaviour in dual-unitary circuit dynamics

Pieter Claeys
(University of Cambridge)
Abstract

The dynamics of quantum many-body systems is intricately related to random matrix theory (RMT), to such a degree that quantum chaos is even defined through random matrix level statistics. However, exact results on this connection are typically precluded by the exponentially large Hilbert space. After a short introduction to the role of RMT in many-body dynamics, I will show how dual-unitary circuits present a minimal model of quantum chaos where this connection can be made rigorous. This will be illustrated using a new kind of emergent random matrix behaviour following a quantum quench: starting from a time-evolved state, an ensemble of pure states supported on a small subsystem can be generated by performing projective measurements on the remainder of the system, leading to a projected ensemble. In chaotic quantum systems it was conjectured that such projected ensembles become indistinguishable from the uniform Haar-random ensemble and lead to a quantum state design, which can be shown to hold exactly in dual-unitary circuit dynamics.

Tue, 26 Apr 2022

14:00 - 15:00
C6

Drug Pair Scoring Theory, Models and Software

Benedek Rozemberczki
Further Information

Dr. Benedek Rozemberczki is currently a machine learning engineer at AstraZeneca.

Abstract

Pair combination repurposing of drugs is a common challenge faced by researchers in the pharmaceutical industry. Network biology and molecular machine learning based drug pair scoring techniques offer computation tools to predict the interaction, polypharmacy side effects and synergy of drugs. In this talk we overview of three things: (a) the theory and unified model of drug pair scoring (b) a relational machine learning model that can solve the pair scoring task (c) the design of large-scale machine learning systems needed to tackle the pair scoring task.

ArXiv links: https://arxiv.org/abs/2111.02916https://arxiv.org/abs/2110.15087https://arxiv.org/abs/2202.05240.

ML library: https://github.com/AstraZeneca/chemicalx

Tue, 26 Apr 2022

13:30 - 15:00
Imperial College

CDT in Mathematics of Random Systems April Workshop 2022

Julian Meier, Omer Karin
(University of Oxford/Imperial College London)
Further Information

Please contact @email for remote viewing details

Abstract

1:30pm Julian Meier, University of Oxford

Interacting-Particle Systems with Elastic Boundaries and Nonlinear SPDEs

We study interacting particle systems on the positive half-line. When we impose an elastic boundary at zero, the particle systems give rise to nonlinear SPDEs with irregular boundaries. We show existence and uniqueness of solutions to these equations. To deal with the nonlinearity we establish a probabilistic representation of solutions and regularity in L2.

2:15pm Dr Omer Karin, Imperial College London

Mathematical Principles of Biological Regulation

Modern research in the life sciences has developed remarkable methods to measure and manipulate biological systems. We now have detailed knowledge of the molecular interactions inside cells and the way cells communicate with each other. Yet many of the most fundamental questions (such as how do cells choose and maintain their identities? how is development coordinated? why do homeostatic processes fail in disease?) remain elusive, as addressing them requires a good understanding of complex dynamical processes. In this talk, I will present a mathematical approach for tackling these questions, which emphasises the role of control and of emergent properties. We will explore the application of this approach to various questions in biology and biomedicine, and highlight important future directions.

 

Tue, 26 Apr 2022

12:00 - 13:00
L3

What is the iε for the S-matrix?

Holmfridur S. Hannesdottir
(IAS Princeton)
Abstract

Can the S-matrix be complexified in a way consistent with causality? Since the 1960's, the affirmative answer to this question has been well-understood for 2→2 scattering of the lightest particle in theories with a mass gap at low momentum transfer, where the S-matrix is analytic everywhere except at normal-threshold branch cuts. We ask whether an analogous picture extends to realistic theories, such as the Standard Model, that include massless fields, UV/IR divergences, and unstable particles. Especially in the presence of light states running in the loops, the traditional iε prescription for approaching physical regions might break down, because causality requirements for the individual Feynman diagrams can be mutually incompatible. We demonstrate that such analyticity problems are not in contradiction with unitarity. Instead, they should be thought of as finite-width effects that disappear in the idealized 2→2 scattering amplitudes with no unstable particles, but might persist at higher multiplicity. To fix these issues, we propose an iε-like prescription for deforming branch cuts in the space of Mandelstam invariants without modifying the analytic properties. This procedure results in a complex strip around the real part of the kinematic space, where the S-matrix remains causal. To help with the investigation of related questions, we introduce holomorphic cutting rules, new approaches to dispersion relations, as well as formulae for local behavior of Feynman integrals near branch points, all of which are illustrated on explicit examples.

Tue, 26 Apr 2022

10:00 - 12:00
L3

Regularity Theory of Spaces with Lower Ricci Curvature Bounds

Daniele Semola
(Oxford University)
Further Information

Aimed at: people interested on Geometric Analysis, Geometric Measure Theory and regularity theory in Partial Differential Equations.

Prerequisites: Riemannian and Differential Geometry, Metric spaces, basic knowledge of Partial Differential Equations.


Outline of the course:

  • Lecture 1:
    • Quick introduction to non-smooth spaces with lower Ricci curvature bounds [1, 23, 20, 17];
    • Basic properties of spaces with lower Ricci bounds: Bishop-Gromov inequality and doubling metric measure spaces, Bochner’s inequality, splitting theorem [19, 22];
    • Convergence and stability: Gromov-Hausdorff convergence, Gromov pre-compactness theorem, stability and tangent cones [19, 22];
  • Lecture 2:
    • Functional form of the splitting theorem via splitting maps;
    • δ-splitting maps and almost splitting theorem [5, 7];
    • Definition of metric measure cone, stability of RCD property for cones [16];
    • Functional form of the volume cone implies metric cone [12];
    • Almost volume cone implies almost metric cone via stability.
  • Lecture 3:
    • Maximal function type arguments;
    • Existence of Euclidean tangents;
    • Rectifiability and uniqueness of tangents at regular points [18];
    • Volume convergence [9, 13];
    • Tangent cones are metric cones on noncollapsed spaces [5, 6, 13].
  • Lecture 4:
    • Euclidean volume rigidity [9, 6, 13];
    • ε-regularity and classical Reifenberg theorem [6, 15, 7];
    • Harmonic functions on metric measure cones, frequency and separation of variables [7];
    • Transformation theorem for splitting maps [7];
    • Proof of canonical Reifenberg theorem via harmonic splitting maps [7].
  • Lecture 5:
    • Regular and singular sets [6, 13];
    • Stratification of singular sets [6, 13];
    • Examples of singular behaviours [10, 11];
    • Hausdorff dimension bounds via Federer’s dimension reduction [6, 13];
    • Quantitative stratification of singular sets [8];
    • An introduction to quantitative differentiation [3];
    • Cone splitting principle [8];
    • Quantitative singular sets and Minkowski content bounds [8].
  • Lecture 6:
    • The aim of this lecture is to give an introduction to the most recent developments of the regularity theory for non collapsed Ricci limit spaces. We will introduce the notion of neck region in this context and then outline how they have been used to prove rectifiability of singular sets in any codimension for non collapsed Ricci limit spaces by Cheeger-Jiang-Naber [7].
Abstract

The aim of this course is to give an introduction to the regularity theory of non-smooth spaces with lower bounds on the Ricci Curvature. This is a quickly developing field with motivations coming from classical questions in Riemannian and differential geometry and with connections to Probability, Geometric Measure Theory and Partial Differential Equations.


In the lectures we will focus on the non collapsed case, where much sharper results are available, mainly adopting the synthetic approach of the RCD theory, rather than following the original proofs.


The techniques used in this setting have been applied successfully in the study of Minimal surfaces, Elliptic PDEs, Mean curvature flow and Ricci flow and the course might be of interest also for people working in these subjects.

Mon, 25 Apr 2022

16:00 - 17:00
C1

Primes in arithmetic progression

Lasse Grimmelt
Abstract

The distribution of primes in arithmetic progressions (AP) s a central question of analytic number theory. It is closely connected to the additive behaviour of primes (for example in the Goldbach problem) and application of sieves (for example in the Twin Prime problem). In this talk I will outline the basic results without going into technical details. The central questions I will consider are: What are the different tools used to study primes in AP? In what ranges of moduli are they useful? What error terms can be achieved? How do recent developments fit into the bigger picture?

Mon, 25 Apr 2022

15:30 - 16:30
L4

Knot theory and machine learning

Professor Marc Lackenby
((Oxford University) )
Abstract

Knot theory is divided into several subfields. One of these is hyperbolic knot theory, which is focused on the hyperbolic structure that exists on many knot complements. Another branch of knot theory is concerned with invariants that have connections to 4-manifolds, for example the knot signature and Heegaard Floer homology. In my talk, I will describe a new relationship between these two fields that was discovered with the aid of machine learning. Specifically, we show that the knot signature can be estimated surprisingly accurately in terms of hyperbolic invariants. We introduce a new real-valued invariant called the natural slope of a hyperbolic knot in the 3-sphere, which is defined in terms of its cusp geometry. Our main result is that twice the knot signature and the natural slope differ by at most a constant times the hyperbolic volume divided by the cube of the injectivity radius. This theorem has applications to Dehn surgery and to 4-ball genus. We will also present a refined version of the inequality where the upper bound is a linear function of the volume, and the slope is corrected by terms corresponding to short geodesics that have odd linking number with the knot. My talk will outline the proofs of these results, as well as describing the role that machine learning played in their discovery.

This is joint work with Alex Davies, Andras Juhasz, and Nenad Tomasev

Mon, 25 Apr 2022

15:30 - 16:30
L3

Scaling limits for Hastings-Levitov aggregation with sub-critical parameters

JAMES NORRIS
(University of Cambridge)
Abstract


We consider, in a framework of iterated random conformal maps, a two-parameteraggregation model of Hastings-Levitov type, in which the size and intensity of new particles are each chosen to vary as a power of the density of harmonic measure. Then we consider a limit
in which the overall intensity of particles become large, while the particles themselves become
small. For a certain `sub-critical' range of parameter values, we can show a law of large numbers and fluctuation central limit theorem. The admissible range of parameters includes an off-lattice version of the Eden model, for which we can show that disk-shaped clusters are stable.
Many open problem remain, not least because the limit PDE does not yet have a satisfactory mathematical theory.

This is joint work with Vittoria Silvestri and Amanda Turner.

Mon, 25 Apr 2022
14:15
L5

Ricci flows with nonstandard initial data

Peter Topping
(University of Warwick)
Abstract

Most Ricci flow theory takes the short-time existence of solutions as a starting point and ends up concerned with understanding the long-time limiting behaviour and the structure of any finite-time singularities that may develop along the way. In this talk I will look at what you can think of as singularities at time zero. I will describe some of the situations in which one would like to start a  Ricci flow with a space that is rougher than a smooth bounded curvature Riemannian manifold, and some of the situations in which one considers smooth initial data that is only achieved in a non-smooth way. A particularly interesting and useful case is the problem of starting a Ricci flow on a Riemann surface equipped with a measure. I will not be assuming expertise in Ricci flow theory. Parts of the talk are joint with either Hao Yin (USTC) or ManChun Lee (CUHK).

Mon, 25 Apr 2022

12:45 - 13:45
L1

AdS Virasoro-Shapiro from dispersive sum rules

Joao Silva
(Oxford)
Abstract

We consider the four-point correlator of the stress-energy tensor in N=4 SYM, to leading order in inverse powers of the central charge, but including all order corrections in 1/lambda. This corresponds to the AdS version of the Virasoro-Shapiro amplitude to all orders in the small alpha'/low energy expansion. Using dispersion relations in Mellin space, we derive an infinite set of sum rules. These sum rules strongly constrain the form of the amplitude, and determine all coefficients in the low energy expansion in terms of the CFT data for heavy string operators, in principle available from integrability. For the first set of corrections to the flat space amplitude we find a unique solution consistent with the results from integrability and localisation.

Fri, 22 Apr 2022

11:45 - 13:15
L4

InFoMM CDT Group Meeting

Joe Roberts, Matthew Shirley
(Mathematical Institute (University of Oxford))
Wed, 20 Apr 2022

10:00 - 11:00
C1

A geometric fundamental class for Smale spaces

Mike Whittaker
(Glasgow)
Abstract

A few years back, Smale spaces were shown to exhibit noncommutative Poincaré duality (with Jerry Kaminker and Ian Putnam). The fundamental class was represented as an extension by the compacts. In current work we describe a Fredholm module representation of the fundamental class. The proof uses delicate approximations of the Smale space arising from a refining sequence of (open) Markov partition covers. I hope to explain all these notions in an elementary manner. This is joint work with Dimitris Gerontogiannis and Joachim Zacharias.

Wed, 20 Apr 2022

09:00 - 10:00
Virtual

Optimization, Speed-up, and Out-of-distribution Prediction in Deep Learning

Wei Chen
(Chinese Academy of Sciences)
Further Information
Abstract

In this talk, I will introduce our investigations on how to make deep learning easier to optimize, faster to train, and more robust to out-of-distribution prediction. To be specific, we design a group-invariant optimization framework for ReLU neural networks; we compensate the gradient delay in asynchronized distributed training; and we improve the out-of-distribution prediction by incorporating “causal” invariance.

Tue, 19 Apr 2022

14:00 - 15:00
C6

Epidemics on networks: From complicated structures to simple dynamics

Bastian Prasse
(European Centre for Disease Prevention and Control)
Abstract

The spread of an infectious disease crucially depends on the contact patterns of individuals, which range from superspreaders and clustered communities to isolated individuals with only a few regular contacts. The contact network specifies all contacts either between individuals in a population or, on a coarser scale, the contacts between groups of individuals, such as households, age groups or geographical regions. The structure of the contact network has a decisive impact on the viral dynamics. However, in most scenarios, the precise network structure is unknown, which constitutes a tremendous obstacle to understanding and predicting epidemic outbreaks.

This talk focusses on a stark contrast: network structures are complicated, but viral dynamics on networks are simple. Specifically, denote the N x 1 viral state vector by I(t) = (I_1(t), ..., I_N(t)), where N is the network size and I_i(t) is the infection probability of individual i at time t. The dynamics are “simple” in the way that the state I(t) evolves in a subspace X of R^N of astonishingly low dimension dim(X) << N. The low dimensionality of the viral dynamics has far-reaching consequences. First, it is possible to predict an epidemic outbreak, even without knowing the network structure. Second, provided that the basic reproduction number R_0 is close to one, the Susceptible-Infectious-Susceptible (SIS) epidemic model has a closed-form solution for arbitrarily large and heterogeneous contact networks.

Fri, 01 Apr 2022

16:00 - 17:00
L3

What's it like working for Citadel Securities?

Oliver Sheriden-Methven (Citadel Securities)
Abstract

Dr Oliver Sheridan-Methven from Citadel Securities, (an InFoMM and MScMCF alumni), will be talking about his experiences from studying at the Mathematical Institute, interviewing for jobs, to working in finance. Now in Zurich, Oliver is a quantitative developer in the advanced scientific computing team at Citadel Securities, a world leading market maker. Citadel Securities specialises in ultra high frequency trading, low latency execution, and their researchers tackle cutting edge machine learning and data science problems on colossal data sets with humongous computational resources. Oliver will be talking about his own experiences, and also how mathematicians are naturally great fits for a huge number of roles at Citadel Securities.

Fri, 25 Mar 2022

11:45 - 13:15
L4

InFoMM CDT Group Meeting

Yu Tian, John Fitzgerald, Markus Dablander
(Mathematical Institute (University of Oxford))
Thu, 24 Mar 2022

16:00 - 17:00
Virtual

The Geometry of Linear Convolutional Networks

Kathlén Kohn
(KTH Royal Institute of Technology)
Further Information
Abstract

We discuss linear convolutional neural networks (LCNs) and their critical points. We observe that the function space (that is, the set of functions represented by LCNs) can be identified with polynomials that admit certain factorizations, and we use this perspective to describe the impact of the network's architecture on the geometry of the function space.

For instance, for LCNs with one-dimensional convolutions having stride one and arbitrary filter sizes, we provide a full description of the boundary of the function space. We further study the optimization of an objective function over such LCNs: We characterize the relations between critical points in function space and in parameter space and show that there do exist spurious critical points. We compute an upper bound on the number of critical points in function space using Euclidean distance degrees and describe dynamical invariants for gradient descent.

This talk is based on joint work with Thomas Merkh, Guido Montúfar, and Matthew Trager.

Thu, 24 Mar 2022

15:00 - 16:00
Virtual

Derived blow-ups using Rees algebras and virtual Cartier divisors

Jeroen Hekking
(KTH Stockholm)
Abstract

The blow-up B of a scheme X in a closed subscheme Z enjoys the universal property that for any scheme X' over X such that the pullback of Z to X' is an effective Cartier divisor, there is a unique morphism of X' into B over X. It is well-known that the blow-up commutes along flat base change.

In this talk, I will discuss a derived enhancement B' of B, namely the derived blow-up, which enjoys a universal property against all schemes over X, satisfies arbitrary (derived) base-change, and contains B as a closed subscheme. To this end, we will need some elements from derived algebraic geometry, which I will review along the way. This will allow us to construct the derived blow-up as the projective spectrum of the derived Rees algebra, and state its functor of points in terms of virtual Cartier divisors, using Weil restrictions.

This is based on ongoing joint work with Adeel Khan and David Rydh.

Sun, 20 Mar 2022

17:30 - 18:30
L1

Bach, the Universe & Everything - The Mathematics of Decisions

Orchestra of the Age of Enlightenment & Sam Cohen
(Oxford)
Further Information

Oxford Mathematics in partnership with Orchestra of the Age of Enlightenment - Bach, the Universe & Everything

The Mathematics of Decisions
Sunday 20 March, 5:30-6.30pm
Mathematical Institute, OX2 6GG

The Science:
In this talk, Oxford Mathematics's Samuel Cohen asks: how do you make decisions today when you know things will change tomorrow?

The Music:
JS Bach: Liebster Jesu, mein Verlangen (Dearest Jesus, my Desire, BWV 32)
This Cantata is in the form of a dialogue. It reminds us of what we have lost and what we can find.  

JS Bach: Prelude, Freu dich sehr, o meine Seele (BWV Anh. II 52)
William Byrd: Christe qui lux es et dies
Tomaso Albinoni: Adagio from Oboe Concerto Op 9 No. 2

Tickets £15: Buy tickets here

Fri, 18 Mar 2022
16:00
L6

Plaquette-dimer liquid with emergent fracton

Yizhi You
(Oxford University)
Further Information

The speaker will be in-person. It is also possible to join virtually via zoom.

Abstract

We consider close-packed tiling models of geometric objects -- a mixture of hardcore dimers and plaquettes -- as a generalisation of the familiar dimer models. Specifically, on an anisotropic cubic lattice, we demand that each site be covered by either a dimer on a z-link or a plaquettein the x-y plane. The space of such fully packed tilings has an extensive degeneracy. This maps onto a fracton-type `higher-rank electrostatics', which can exhibit a plaquette-dimer liquid and an ordered phase. We analyse this theory in detail, using height representations and T-duality to demonstrate that the concomitant phase transition occurs due to the proliferation of dipoles formed by defect pairs. The resultant critical theory can be considered as a fracton version of the Kosterlitz-Thouless transition. A significant new element is its UV-IR mixing, where the low energy behavior of the liquid phase and the transition out of it is dominated by local (short-wavelength) fluctuations, rendering the critical phenomenon beyond the renormalization group paradigm.