Date
Tue, 21 May 2013
Time
12:00 - 13:00
Location
L3
Speaker
Ivette Fuentes (Nottingham)

Cutting-edge experiments in quantum communications are reaching regimes

where relativistic effects can no longer be neglected. For example, there

are advanced plans to use satellites to implement teleportation and quantum

cryptographic protocols. Relativistic effects can be expected at these

regimes: the Global Positioning System (GPS), which is a system of

satellites that is used for time dissemination and navigation, requires

relativistic corrections to determine time and positions accurately.

Therefore, it is timely to understand what are the effects of gravity and

motion on entanglement and other quantum properties exploited in quantum

information.

In this talk I will show that entanglement can be created or degraded by

gravity and non-uniform motion. While relativistic effects can degrade the

efficiency of teleportation between moving observers, the effects can also

be exploited in quantum information. I will show that the relativistic

motion of a quantum system can be used to perform quantum gates. Our

results, which will inform future space-based experiments, can be

demonstrated in table-top experiments using superconducting circuits.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.