Date
Tue, 22 Oct 2013
Time
14:30 - 15:00
Location
L5
Speaker
Dmitry Savostyanov
Organisation
University of Southampton

We propose a new algorithm for the approximate solution of large-scale high-dimensional tensor-structured linear systems. It can be applied to high-dimensional differential equations, which allow a low-parametric approximation of the multilevel matrix, right-hand side and solution in a tensor product format. We apply standard one-site tensor optimisation algorithm (ALS), but expand the tensor manifolds using the classical iterative schemes (e.g. steepest descent).  We obtain the rank--adaptive algorithm with the theoretical convergence estimate not worse than the one of the steepest descent, and fast practical convergence, comparable or even better than the convergence of more expensive two-site optimisation algorithm (DMRG).
The method is successfully applied for a high--dimensional problem of quantum chemistry, namely the NMR simulation of a large peptide.

This is a joint work with S.Dolgov (Max-Planck Institute, Leipzig, Germany), supported by RFBR and EPSRC grants.

Keywords: high--dimensional problems, tensor train format, ALS, DMRG, steepest descent, convergence rate, superfast algorithms, NMR.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.