Date
Mon, 10 Feb 2014
Time
14:15 - 15:15
Location
Eagle House
Speaker
GUY FLINT
Organisation
University of Oxford

Sampling a $d$-dimensional continuous signal (say a semimartingale) $X:[0,T] \rightarrow \mathbb{R}^d$ at times $D=(t_i)$, we follow the recent papers [Gyurko-Lyons-Kontkowski-Field-2013] and [Lyons-Ni-Levin-2013] in constructing a lead-lag path; to be precise, a piecewise-linear, axis-directed process $X^D: [0,1] \rightarrow
\mathbb{R}^{2d}$ comprised of a past and future component. Lifting $X^D$ to its natural rough path enhancement, we can consider the question of convergence as
the latency of our sampling becomes finer.

Last updated on 3 Apr 2022, 1:32am. Please contact us with feedback and comments about this page.