Date
Tue, 17 Feb 2015
Time
12:00 - 13:15
Location
L5
Speaker
John Cardy

In a quantum quench, a system is prepared in some state
$|\psi_0\rangle$, usually the ground state of a hamiltonian $H_0$, and then
evolved unitarily with a different hamiltonian $H$. I study this problem
when $H$ is a 1+1-dimensional conformal field theory on a large circle of
length $L$, and the initial state has short-range correlations and
entanglement. I argue that (a) for times $\ell/2<t<(L-\ell)/2$  the
reduced density matrix of a subinterval of length $\ell$ is exponentially
close to that of a thermal ensemble; (b) despite this, for a rational CFT
the return amplitude $\langle\psi_0|e^{-iHt}|\psi_0\rangle$ is $O(1)$ at
integer multiples of $2t/\ell$ and has interesting structure at all rational
values of this ratio. This last result is related to the modular properties
of Virasoro characters.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.