Date
Mon, 27 Apr 2015
14:15
Location
L4
Speaker
Philip Boalch
Organisation
Orsay

From a geometric viewpoint the irregular Riemann-Hilbert correspondence can be viewed as a machine that takes as input a simple
`additive' symplectic/Poisson manifold and it outputs a more complicated `multiplicative' symplectic/Poisson manifold. In the
simplest nontrivial example it converts the linear Poisson manifold Lie(G)^* into the dual Poisson Lie group G^* (which is the Poisson
manifold underlying the Drinfeld-Jimbo quantum group). This talk will firstly describe some more recent (and more complicated) examples of
such `nonperturbative symplectic/Poisson manifolds', i.e. symplectic spaces of Stokes/monodromy data or `wild character varieties'. Then
the natural generalisations (`fission algebras') of the deformed multiplicative preprojective algebras that occur will be discussed, some
of which are known to be related to Cherednik algebras.

Last updated on 3 Apr 2022, 1:32am. Please contact us with feedback and comments about this page.