Date
Fri, 13 Nov 2015
Time
14:00 - 15:00
Location
L3
Speaker
Miss Annalisa Occhipinti
Organisation
Computer Laboratory University of Cambridge

Ductal carcinoma is one of the most common cancers among women, and the main cause of death is the formation of metastases. The development of metastases is caused by cancer cells that migrate from the primary tumour site (the mammary duct) through the blood vessels and extravasating they initiate metastasis. In my talk, I present a multi-compartment mathematical model which mimics the dynamics of tumoural cells in the mammary duct, in the circulatory system and in the bone. Using a branching process approach, the model describes the relation between the survival times and the four markers mainly involved in metastatic breast cancer (EPCAM, CD47, CD44 and MET). In particular, the model takes into account the gene expression profile of circulating tumour cells to predict personalised survival probability. Gene expression data of metastatic breast cancer have been used to validate the model. The administration of drugs as bisphosphonates is also included in order to analyse the dynamic changes induced by the therapy.

Stochastic and deterministic processes are merged together to describe cancer progression and obtain personalised survival analysis based on the gene expression levels of each patient. The main aim of the talk is showing that Mathematics can have a strong impact in speeding cancer research, predicting survival probability and selecting the best cancer treatment. 

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.