Date
Wed, 21 Oct 2015
16:00
Location
C1
Speaker
Alexander Margolis
Organisation
Oxford

For a finitely generated group $G$ with subgroup $H$ we define $e(G,H)$, the relative ends of the pair $(G,H)$, to be the number of ends of the Cayley graph of G quotiented out by the left action of H. We will examine some basic properties of relative ends and will outline the theorem of Sageev showing that $e(G,H)>1$ if and only if $G$ acts essentially on a simply connected CAT(0) cube complex. If time permits, we will outline Niblo's proof of Stallings' theorem using Sageev's construction.

Last updated on 4 Apr 2022, 2:57pm. Please contact us with feedback and comments about this page.