Author
Chen, G
Perthame, B
Journal title
Proceedings of the American Mathematical Society
DOI
10.1090/S0002-9939-09-09898-0
Issue
9
Volume
137
Last updated
2025-04-12T19:08:51.02+01:00
Page
3003-3011
Abstract
We are interested in the large-time behavior of periodic entropy solutions in L∞ to anisotropic degenerate parabolic-hyperbolic equations of second order. Unlike the pure hyperbolic case, the nonlinear equation is no longer self-similar invariant, and the diffusion term in the equation significantly affects the large-time behavior of solutions; thus the approach developed earlier, based on the self-similar scaling, does not directly apply. In this paper, we develop another approach for establishing the decay of periodic solutions for anisotropic degenerate parabolic-hyperbolic equations. The proof is based on the kinetic formulation of entropy solutions. It involves time translations and a monotonicity-in-time property of entropy solutions and employs the advantages of the precise kinetic equation for the solutions in order to recognize the role of nonlinearity-diffusivity of the equation. © 2009 American Mathematical Society.
Symplectic ID
203544
Favourite
On
Publication type
Journal Article
Publication date
01 Sep 2009
Please contact us with feedback and comments about this page.