Journal title
              ELECTRONIC JOURNAL OF COMBINATORICS
          Issue
              4
          Volume
              25
          Last updated
              2021-11-11T11:20:42.18+00:00
          Abstract
              © The authors.  A clique colouring of a graph is a colouring of the vertices such that no maximal clique is monochromatic (ignoring isolated vertices). The least number of colours in such a colouring is the clique chromatic number. Given n points x 1 , …, x n in the plane, and a threshold r > 0, the corresponding geometric graph has vertex set {v 1 , …, v n }, and distinct v i and v j are adjacent when the Euclidean distance between x i and x j is at most r. We investigate the clique chromatic number of such graphs. We first show that the clique chromatic number is at most 9 for any geometric graph in the plane, and briefly consider geometric graphs in higher dimensions. Then we study the asymptotic behaviour of the clique chromatic number for the random geometric graph G(n, r) in the plane, where n random points are independently and uniformly distributed in a suitable square. We see that as r increases from 0, with high probability the clique chromatic number is 1 for very small r, then 2 for small r, then at least 3 for larger r, and finally drops back to 2.
          Symplectic ID
              670905
          Download URL
              http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000456788300011&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=4fd6f7d59a501f9b8bac2be37914c43e
          Submitted to ORA
              Off
          Publication type
              Journal Article
          Publication date
              21 December 2018
           
    