Date
Thu, 09 Nov 2017
16:00
Location
C5
Speaker
Nicholas Wilkins
Organisation
Oxford University

Topologists have the Steenrod squares, a collection of additive homomorphisms on the Z/2 cohomology of a space M. They can be defined axiomatically and are often be regarded as algebraic operations on cohomology groups (for many purposes). However, Betz and Cohen showed that they could be viewed geometrically. 

Symplectic geometers have quantum cohomology, which on a symplectic manifold M is a deformation of singular cohomology using holomorphic spheres.

The geometric definition of the Steenrod square extends to quantum cohomology. This talk will describe the Steenrod square and quantum cohomology in terms of the intersection product, and then give a description of this quantum Steenrod square by putting these both together. We will describe some properties of the quantum squares, such as the quantum Cartan formula, and perform calculations in certain cases.

Please contact us with feedback and comments about this page. Last updated on 04 Apr 2022 15:24.