A Finite Theory of Quantum Physics

13 February 2018
12:00
to
13:15
Tim Palmer
Abstract

Hardy's axiomatic approach to quantum theory revealed that just one axiom
distinguishes quantum theory from classical probability theory: there should
be continuous reversible transformations between any pair of pure states. It
is the single word `continuous' that gives rise to quantum theory. This
raises the question: Does there exist a finite theory of quantum physics
(FTQP) which can replicate the tested predictions of quantum theory to
experimental accuracy? Here we show that an FTQP based on complex Hilbert
vectors with rational squared amplitudes and rational phase angles is
possible providing the metric of state space is based on p-adic rather than
Euclidean distance. A key number-theoretic result that accounts for the
Uncertainty Principle in this FTQP is the general incommensurateness between
rational $\phi$ and rational $\cos \phi$. As such, what is often referred to
as quantum `weirdness' is simply a manifestation of such number-theoretic
incommensurateness. By contrast, we mostly perceive the world as classical
because such incommensurateness plays no role in day-to-day physics, and
hence we can treat $\phi$ (and hence $\cos \phi$) as if it were a continuum
variable. As such, in this FTQP there are two incommensurate Schr\"{o}dinger
equations based on the rational differential calculus: one for rational
$\phi$ and one for rational $\cos \phi$. Each of these individually has a

simple probabilistic interpretation - it is their merger into one equation
on the complex continuum that has led to such problems over the years. Based
on this splitting of the Schr\"{o}dinger equation, the measurement problem
is trivially solved in terms of a nonlinear clustering of states on $I_U$.
Overall these results suggest we should consider the universe as a causal
deterministic system evolving on a finite fractal-like invariant set $I_U$
in state space, and that the laws of physics in space-time derive from the
geometry of $I_U$. It is claimed that such a  deterministic causal FTQP will
be much easier to synthesise with general relativity theory than is quantum
theory.

  • Quantum Field Theory Seminar