A note on Linnik’s theorem on quadratic non-residues

Author: 

Balister, P
Bollobás, B
Lee, J
Morris, R
Riordan, O

Publication Date: 

9 April 2019

Journal: 

Archiv der Mathematik

Last Updated: 

2020-01-21T09:14:23.483+00:00

Issue: 

4

Volume: 

112

DOI: 

10.1007/s00013-018-1281-y

page: 

371-375

abstract: 

© 2019, Springer Nature Switzerland AG. We present a short and purely combinatorial proof of Linnik’s theorem: for any ε> 0 there exists a constant C ε such that for any N, there are at most C ε primes p≤ N such that the least positive quadratic non-residue modulo p exceeds N ε .

Symplectic id: 

896004

Submitted to ORA: 

Not Submitted

Publication Type: 

Journal Article